Skip to content

Commit

Permalink
Merge pull request #85 from proux01/mc_1046
Browse files Browse the repository at this point in the history
  • Loading branch information
pi8027 authored Nov 29, 2023
2 parents 02bcb5a + 27a304a commit 9893f5f
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions src/freeg.v
Original file line number Diff line number Diff line change
Expand Up @@ -305,7 +305,7 @@ Section FreegTheory.

Lemma fglift_Freeg s : fglift [freeg s] = prelift s.
Proof.
unlock Freeg; unlock fglift; rewrite !piE /lift.
unlock Freeg; unlock fglift; rewrite ?piE /lift.
rewrite (prelift_perm_eq (perm_eq_fgrepr _)) /=.
exact: prelift_reduce.
Qed.
Expand Down Expand Up @@ -493,7 +493,7 @@ Module FreegZmodType.

Lemma pi_fgadd : {morph \pi : D1 D2 / fgadd_r D1 D2 >-> fgadd D1 D2}.
Proof.
case=> [D1 redD1] [D2 redD2]; unlock fgadd; rewrite !piE.
case=> [D1 redD1] [D2 redD2]; unlock fgadd; rewrite ?piE.
apply/eqmodP/freegequivP => k /=.
by rewrite !precoeff_reduce !precoeff_cat !precoeff_repr.
Qed.
Expand All @@ -506,7 +506,7 @@ Module FreegZmodType.

Lemma pi_fgopp : {morph \pi : D / fgopp_r D >-> fgopp D}.
Proof.
case=> [D redD]; unlock fgopp; rewrite !piE.
case=> [D redD]; unlock fgopp; rewrite ?piE.
apply/eqmodP/freegequivP => k /=.
by rewrite !precoeff_reduce !precoeff_opp !precoeff_repr.
Qed.
Expand All @@ -516,14 +516,14 @@ Module FreegZmodType.
Lemma addmA : associative fgadd.
Proof.
elim/quotW=> [D1]; elim/quotW=> [D2]; elim/quotW=> [D3].
unlock fgadd; rewrite !piE; apply/eqmodP/freegequivP => k /=.
unlock fgadd; rewrite ?piE; apply/eqmodP/freegequivP => k /=.
by rewrite !(precoeff_reduce, precoeff_cat, precoeff_repr) addrA.
Qed.

Lemma addmC : commutative fgadd.
Proof.
elim/quotW=> [D1]; elim/quotW=> [D2].
unlock fgadd; rewrite !piE; apply/eqmodP/freegequivP => k /=.
unlock fgadd; rewrite ?piE; apply/eqmodP/freegequivP => k /=.
by rewrite !(precoeff_reduce, precoeff_cat, precoeff_repr) addrC.
Qed.

Expand Down Expand Up @@ -572,7 +572,7 @@ Section FreegZmodTypeTheory.
Lemma lift_is_additive : additive (fglift f).
Proof.
elim/quotW=> [[D1 /= H1]]; elim/quotW=> [[D2 /= H2]].
unlock fglift; rewrite !piE [_ + _]piE /lift /=.
unlock fglift; rewrite ?piE [_ + _]piE /lift /=.
rewrite !prelift_repr /fgadd_r /fgopp_r /=.
by rewrite !(prelift_reduce, prelift_cat, prelift_opp).
Qed.
Expand Down

0 comments on commit 9893f5f

Please sign in to comment.