This is an adapted version of the official PyTorch implementation for DINO. It is used in the Odeuropa project to train our baseline models for the detection of olfactory objects.
Please refer to the original repository installation instructions.
Organize your data in coco format, i.e.
COCODIR/
├── train2017/
├── val2017/
└── annotations/
├── instances_train2017.json
└── instances_val2017.json
Training can be started using the following command
python main.py -c config/DINO/ODOR_swin_50ep.py --pretrain_model_path ${PATH_TO_SWIN_MODEL} --finetune_ignore n label_enc.weight class_embed --options backbone_dir=${PATH_TO_DIR_CONTAINING_SWIN_MODEL} --coco_path ${PATH_TO_COCO}
Inference can be done using the inference_odor.ipynb
script.