-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
slice operator implementation for webgpu native (#23264)
Increases operator coverage for webgpu native ep
- Loading branch information
Showing
5 changed files
with
350 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
#include "core/common/inlined_containers.h" | ||
#include "core/providers/webgpu/tensor/slice.h" | ||
#include "core/providers/cpu/tensor/utils.h" | ||
#include "core/providers/webgpu/shader_helper.h" | ||
#include "core/providers/webgpu/webgpu_supported_types.h" | ||
|
||
namespace onnxruntime { | ||
namespace webgpu { | ||
|
||
ONNX_OPERATOR_VERSIONED_KERNEL_EX( | ||
Slice, | ||
kOnnxDomain, | ||
1, 9, | ||
kWebGpuExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", WebGpuSupportedFloatTypes()), | ||
Slice); | ||
|
||
ONNX_OPERATOR_VERSIONED_KERNEL_EX( | ||
Slice, | ||
kOnnxDomain, | ||
10, 10, | ||
kWebGpuExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", WebGpuSupportedFloatTypes()) | ||
.InputMemoryType(OrtMemTypeCPU, 1) | ||
.InputMemoryType(OrtMemTypeCPU, 2) | ||
.InputMemoryType(OrtMemTypeCPU, 3) | ||
.InputMemoryType(OrtMemTypeCPU, 4), | ||
Slice); | ||
|
||
ONNX_OPERATOR_VERSIONED_KERNEL_EX( | ||
Slice, | ||
kOnnxDomain, | ||
11, 12, | ||
kWebGpuExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", WebGpuSupportedFloatTypes()) | ||
.InputMemoryType(OrtMemTypeCPU, 1) | ||
.InputMemoryType(OrtMemTypeCPU, 2) | ||
.InputMemoryType(OrtMemTypeCPU, 3) | ||
.InputMemoryType(OrtMemTypeCPU, 4), | ||
Slice); | ||
|
||
ONNX_OPERATOR_KERNEL_EX( | ||
Slice, | ||
kOnnxDomain, | ||
13, | ||
kWebGpuExecutionProvider, | ||
(*KernelDefBuilder::Create()) | ||
.TypeConstraint("T", WebGpuSupportedFloatTypes()) | ||
.InputMemoryType(OrtMemTypeCPU, 1) | ||
.InputMemoryType(OrtMemTypeCPU, 2) | ||
.InputMemoryType(OrtMemTypeCPU, 3) | ||
.InputMemoryType(OrtMemTypeCPU, 4), | ||
Slice); | ||
|
||
Status SliceProgram::GenerateShaderCode(ShaderHelper& shader) const { | ||
const ShaderVariableHelper& input = shader.AddInput("input", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias); | ||
const ShaderVariableHelper& output = shader.AddOutput("output", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias); | ||
|
||
shader.MainFunctionBody() << shader.GuardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size") | ||
<< "let output_indices = " << output.OffsetToIndices("global_idx") << ";\n" | ||
<< "var input_indices: input_indices_t;\n" | ||
<< "var carry = 0u;\n"; | ||
|
||
for (int i = input.Rank() - 1; i >= 0; i--) { | ||
std::string input_shape_i = absl::StrCat("input_shape_", i); | ||
std::string steps_i = absl::StrCat("steps_", i); | ||
std::string starts_i = absl::StrCat("starts_", i); | ||
std::string output_index_i = absl::StrCat("output_index_", i); | ||
std::string input_index_i = absl::StrCat("input_index_", i); | ||
|
||
shader.MainFunctionBody() << "let " << input_shape_i << " = " << input.IndicesGet("uniforms.input_shape", i) << ";\n" | ||
<< "let " << steps_i << " = " << input.IndicesGet("uniforms.steps", i) << ";\n" | ||
<< "let " << starts_i << " = " << input.IndicesGet("uniforms.starts", i) << ";\n" | ||
<< "var " << output_index_i << " = " << output.IndicesGet("output_indices", i) << ";\n" | ||
<< "var " << input_index_i << " = " << output_index_i << " * " << steps_i << " + " << starts_i << " + carry;\n" | ||
<< "carry = " << input_index_i << " / " << input_shape_i << ";\n" | ||
<< input_index_i << " = " << input_index_i << " % " << input_shape_i << ";\n" | ||
<< "if (" << input.IndicesGet("uniforms.signs", i) << " < 0) {\n" | ||
<< " " << input_index_i << " = " << input_shape_i << " - " << input_index_i << " - 1u + " << starts_i << ";\n" | ||
<< "}\n" | ||
<< input.IndicesSet("input_indices", i, input_index_i) << ";\n"; | ||
} | ||
|
||
shader.MainFunctionBody() << output.SetByOffset("global_idx", input.GetByIndices("input_indices")); | ||
|
||
return Status::OK(); | ||
} | ||
|
||
Status Slice::ComputeInternal(ComputeContext& context) const { | ||
// READ INPUTS | ||
const Tensor* input_tensor = context.Input(0); | ||
const TensorShape& input_shape = input_tensor->Shape(); | ||
int64_t input_rank = static_cast<int64_t>(input_shape.NumDimensions()); | ||
|
||
auto starts_raw = attr_starts_.empty() ? context.Input(1)->DataAsSpan<int64_t>() : gsl::make_span(attr_starts_); | ||
auto ends_raw = attr_ends_.empty() ? context.Input(2)->DataAsSpan<int64_t>() : gsl::make_span(attr_ends_); | ||
|
||
ORT_ENFORCE(starts_raw.size() == ends_raw.size(), "starts and ends must have the same size"); | ||
|
||
int input_count = context.InputCount(); | ||
|
||
const Tensor* axes_tensor = nullptr; | ||
const Tensor* steps_tensor = nullptr; | ||
|
||
if (input_count >= 4) { | ||
// axes provided as input | ||
axes_tensor = context.Input(3); | ||
} | ||
|
||
if (input_count == 5) { | ||
// steps provided as input | ||
steps_tensor = context.Input(4); | ||
} | ||
|
||
// Inject defaults if axes or steps not provided | ||
std::vector<int64_t> axes_default; | ||
if (axes_tensor == nullptr) { | ||
// if axes not provided, set to [0, ..., len(starts)-1] | ||
for (size_t i = 0; i < starts_raw.size(); i++) { | ||
axes_default.push_back(i); | ||
} | ||
} | ||
auto axes_raw = attr_axes_.empty() ? (axes_tensor == nullptr ? gsl::make_span(axes_default) : axes_tensor->DataAsSpan<int64_t>()) : gsl::make_span(attr_axes_); | ||
|
||
std::vector<int64_t> steps_default; | ||
if (steps_tensor == nullptr) { | ||
// if steps not provided, set to [1, ..., 1] of len(starts) | ||
for (size_t i = 0; i < starts_raw.size(); i++) { | ||
steps_default.push_back(1); | ||
} | ||
} | ||
auto steps_raw = steps_tensor == nullptr ? gsl::make_span(steps_default) : steps_tensor->DataAsSpan<int64_t>(); | ||
|
||
// PROCESS INPUTS | ||
std::vector<uint32_t> axes; | ||
for (unsigned int i = 0; i < axes_raw.size(); i++) { | ||
int64_t val = axes_raw[i]; | ||
if (val < 0) { | ||
val += input_rank; | ||
} | ||
axes.push_back(static_cast<int32_t>(val)); | ||
} | ||
|
||
std::vector<uint32_t> starts; | ||
for (unsigned int i = 0; i < starts_raw.size(); i++) { | ||
int64_t val = starts_raw[i]; | ||
if (val < 0) { | ||
val += input_shape[axes[i]]; | ||
} | ||
|
||
if (steps_raw[i] < 0) { | ||
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]] - 1))); | ||
} else { | ||
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]]))); | ||
} | ||
starts.push_back(static_cast<uint32_t>(val)); | ||
} | ||
|
||
std::vector<uint32_t> ends; | ||
for (unsigned int i = 0; i < ends_raw.size(); i++) { | ||
int64_t val = ends_raw[i]; | ||
if (val < 0) { | ||
val += input_shape[axes[i]]; | ||
} | ||
if (steps_raw[i] < 0) { | ||
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]] - 1))); | ||
} else { | ||
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]]))); | ||
} | ||
ends.push_back(static_cast<uint32_t>(val)); | ||
} | ||
|
||
// temporary steps vector to handle negative steps | ||
std::vector<int32_t> steps_tmp; | ||
for (unsigned int i = 0; i < steps_raw.size(); i++) { | ||
if (steps_raw[i] >= std::numeric_limits<int32_t>::max()) { | ||
steps_tmp.push_back(std::numeric_limits<int32_t>::max()); | ||
} else { | ||
steps_tmp.push_back(static_cast<int32_t>(steps_raw[i])); | ||
} | ||
} | ||
|
||
// Insert missing dimensions | ||
if (static_cast<int64_t>(axes.size()) != input_rank) { | ||
for (uint32_t i = 0; i < input_rank; i++) { | ||
int idx = -1; | ||
for (unsigned int j = 0; j < axes_raw.size(); j++) { | ||
if (axes_raw[j] == i) { | ||
idx = j; | ||
break; | ||
} | ||
} | ||
if (idx == -1) { | ||
axes.insert(axes.begin() + i, i); | ||
starts.insert(starts.begin() + i, 0); | ||
ends.insert(ends.begin() + i, static_cast<uint32_t>(input_shape[i])); | ||
steps_tmp.insert(steps_tmp.begin() + i, 1); | ||
} | ||
} | ||
} | ||
|
||
// retain the sign of the steps | ||
std::vector<int32_t> signs; | ||
for (unsigned int i = 0; i < steps_tmp.size(); i++) { | ||
signs.push_back(steps_tmp[i] < 0 ? -1 : (steps_tmp[i] > 0 ? 1 : 0)); | ||
} | ||
|
||
// Convert negative steps to positive steps and reverse starts and ends | ||
for (unsigned int i = 0; i < steps_tmp.size(); i++) { | ||
if (steps_tmp[i] < 0) { | ||
float numSteps = static_cast<float>((static_cast<float>(ends[i]) - static_cast<float>(starts[i])) / static_cast<float>(steps_tmp[i])); | ||
float newEnd = static_cast<float>(starts[i]); | ||
float newStart = newEnd + numSteps * static_cast<float>(steps_tmp[i]); | ||
|
||
starts[i] = static_cast<uint32_t>(newStart); | ||
ends[i] = static_cast<uint32_t>(newEnd); | ||
steps_tmp[i] = static_cast<int32_t>(-steps_tmp[i]); | ||
} | ||
} | ||
|
||
// final steps vector of type unsigned int | ||
std::vector<uint32_t> steps; | ||
for (unsigned int i = 0; i < steps_tmp.size(); i++) { | ||
steps.push_back(static_cast<uint32_t>(steps_tmp[i])); | ||
} | ||
|
||
// Reorder inputs in order of axis | ||
std::vector<int32_t> signs_reordered; | ||
std::vector<uint32_t> steps_reordered, starts_reordered; | ||
for (unsigned int i = 0; i < axes.size(); i++) { | ||
signs_reordered.push_back(0); | ||
steps_reordered.push_back(0); | ||
starts_reordered.push_back(0); | ||
} | ||
for (unsigned int i = 0; i < axes.size(); i++) { | ||
int32_t dim = axes[i]; | ||
signs_reordered[dim] = signs[i]; | ||
steps_reordered[dim] = steps[i]; | ||
starts_reordered[dim] = starts[i]; | ||
} | ||
|
||
// calculate output dims | ||
std::vector<int64_t> output_dims; | ||
for (unsigned int i = 0; i < axes.size(); i++) { | ||
int32_t dim = axes[i]; | ||
float tmp = ceil((static_cast<float>(ends[dim]) - static_cast<float>(starts[dim])) / static_cast<float>(steps[dim])); | ||
if (tmp < 0) | ||
output_dims.push_back(0); | ||
else | ||
output_dims.push_back(static_cast<int64_t>(tmp)); | ||
} | ||
|
||
TensorShape output_shape(output_dims); | ||
|
||
auto* output_tensor = context.Output(0, output_shape); | ||
uint32_t output_size = static_cast<uint32_t>(output_shape.Size()); | ||
|
||
if (output_size == 0) { | ||
return Status::OK(); | ||
} | ||
|
||
SliceProgram program{}; | ||
program | ||
.AddInputs({{input_tensor, ProgramTensorMetadataDependency::TypeAndRank}}) | ||
.AddOutputs({output_tensor}) | ||
.SetDispatchGroupSize((output_size + WORKGROUP_SIZE - 1) / WORKGROUP_SIZE) | ||
.AddUniformVariables({{output_size}, {starts_reordered}, {steps_reordered}, {signs_reordered}}); | ||
return context.RunProgram(program); | ||
} | ||
|
||
} // namespace webgpu | ||
} // namespace onnxruntime |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
#pragma once | ||
|
||
#include "core/providers/webgpu/webgpu_kernel.h" | ||
#include "core/providers/webgpu/program.h" | ||
|
||
namespace onnxruntime { | ||
namespace webgpu { | ||
|
||
class SliceProgram final : public Program<SliceProgram> { | ||
public: | ||
SliceProgram() : Program{"Slice"} {} | ||
|
||
Status GenerateShaderCode(ShaderHelper& sh) const override; | ||
|
||
WEBGPU_PROGRAM_DEFINE_UNIFORM_VARIABLES({"output_size", ProgramUniformVariableDataType::Uint32}, | ||
{"starts", ProgramUniformVariableDataType::Uint32}, | ||
{"steps", ProgramUniformVariableDataType::Uint32}, | ||
{"signs", ProgramUniformVariableDataType::Int32}); | ||
}; | ||
|
||
class Slice final : public WebGpuKernel { | ||
public: | ||
Slice(const OpKernelInfo& info) : WebGpuKernel(info) { | ||
// since only opset1-9 provides these as attributes, we can safely ignore the return value | ||
// we handle failure in fetching the attribute in ComputeInternal | ||
(void)info.GetAttrs("starts", attr_starts_); | ||
(void)info.GetAttrs("ends", attr_ends_); | ||
(void)info.GetAttrs("axes", attr_axes_); | ||
} | ||
|
||
Status ComputeInternal(ComputeContext& context) const override; | ||
|
||
private: | ||
std::vector<int64_t> attr_starts_, attr_ends_, attr_axes_; | ||
}; | ||
|
||
} // namespace webgpu | ||
} // namespace onnxruntime |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.