-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #39 from mkschleg/develop
Develop
- Loading branch information
Showing
7 changed files
with
447 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,7 +3,6 @@ julia: | |
- nightly | ||
- 1.0 | ||
- 1.1 | ||
codecov: true | ||
|
||
matrix: | ||
allow_failures: | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,307 @@ | ||
|
||
|
||
using Plots | ||
using Statistics | ||
using ProgressMeter | ||
using FileIO | ||
using JLD2 | ||
|
||
# These functions are for grid searches. | ||
|
||
|
||
|
||
""" | ||
sensitivity | ||
plots a sensitivity curve over sweep arg with all settings producted according to product_args | ||
""" | ||
function sensitivity(exp_loc, | ||
sweep_arg::String, | ||
product_args::Vector{String}; | ||
results_file="results.jld2", | ||
clean_func=identity, | ||
ci_const = 1.96, | ||
sweep_args_clean=identity, | ||
save_dir="sensitivity", | ||
ylim=nothing) | ||
|
||
gr() | ||
|
||
if exp_loc[end] == '/' | ||
exp_loc = exp_loc[1:end-1] | ||
end | ||
head_dir = dirname(exp_loc) | ||
|
||
ic = ItemCollection(exp_loc) | ||
diff_dict = diff(ic.items) | ||
args = Iterators.product([diff_dict[arg] for arg in product_args]...) | ||
|
||
p1 = ProgressMeter.Progress(length(args), 0.1, "Args: ", offset=0) | ||
|
||
for arg in args | ||
|
||
plt=nothing | ||
μ = zeros(length(diff_dict[sweep_arg])) | ||
σ = zeros(length(diff_dict[sweep_arg])) | ||
|
||
p2 = ProgressMeter.Progress(length(diff_dict[sweep_arg]), 0.1, "$(sweep_arg): ", offset=1) | ||
for (idx, s_a) in enumerate(diff_dict[sweep_arg]) | ||
search_dict = Dict(sweep_arg=>s_a, [product_args[idx]=>key for (idx, key) in enumerate(arg)]...) | ||
_, hashes, _ = search(ic, search_dict) | ||
# println(search_dict) | ||
# println(length(hashes)) | ||
μ_runs = zeros(length(hashes)) | ||
for (idx_d, d) in enumerate(hashes) | ||
|
||
if isfile(joinpath(head_dir, d, results_file)) | ||
results = load(joinpath(head_dir, d, results_file)) | ||
μ_runs[idx_d] = clean_func(results) | ||
# catch e | ||
else | ||
# println(joinpath(head_dir, d, results_file)) | ||
μ_runs[idx_d] = Inf | ||
end | ||
|
||
end | ||
μ[idx] = mean(μ_runs) | ||
# println(μ) | ||
σ[idx] = ci_const * std(μ_runs)/sqrt(length(μ_runs)) | ||
next!(p2) | ||
end | ||
|
||
if plt == nothing | ||
plt = plot(sweep_args_clean(diff_dict[sweep_arg]), μ, yerror=σ, ylim=ylim) | ||
else | ||
plot!(plt, sweep_args_clean(diff_dict[sweep_arg]), μ, yerror=σ) | ||
end | ||
|
||
if !isdir(joinpath(exp_loc, save_dir)) | ||
mkdir(joinpath(exp_loc, save_dir)) | ||
end | ||
|
||
save_file_name = join(["$(key)_$(arg[idx])" for (idx, key) in enumerate(product_args)], "_") | ||
|
||
savefig(plt, joinpath(exp_loc, save_dir, "$(save_file_name).pdf")) | ||
next!(p1) | ||
end | ||
|
||
|
||
end | ||
|
||
|
||
""" | ||
sensitivity_multiline | ||
plots a sensitivity curve over sweep arg with all settings producted according to product_args with lines with args according to line_arg | ||
""" | ||
function sensitivity_multiline(exp_loc, sweep_arg::String, line_arg::String, product_args::Vector{String}; | ||
results_file="results.jld2", clean_func=identity, | ||
sweep_args_clean=identity, save_dir="sensitivity_line", | ||
ylim=nothing, ci_const = 1.96, kwargs...) | ||
|
||
gr() | ||
|
||
if exp_loc[end] == '/' | ||
exp_loc = exp_loc[1:end-1] | ||
end | ||
head_dir = dirname(exp_loc) | ||
|
||
ic = ItemCollection(exp_loc) | ||
diff_dict = diff(ic.items) | ||
args = Iterators.product([diff_dict[arg] for arg in product_args]...) | ||
|
||
p1 = ProgressMeter.Progress(length(args), 0.1, "Args: ", offset=0) | ||
|
||
for arg in args | ||
|
||
plt=nothing | ||
|
||
p2 = ProgressMeter.Progress(length(diff_dict[line_arg]), 0.1, "$(line_arg): ", offset=1) | ||
|
||
for (idx_line, l_a) in enumerate(diff_dict[line_arg]) | ||
|
||
μ = zeros(length(diff_dict[sweep_arg])) | ||
σ = zeros(length(diff_dict[sweep_arg])) | ||
|
||
p3 = ProgressMeter.Progress(length(diff_dict[sweep_arg]), 0.1, "$(sweep_arg): ", offset=2) | ||
for (idx, s_a) in enumerate(diff_dict[sweep_arg]) | ||
search_dict = Dict(sweep_arg=>s_a, line_arg=>l_a, [product_args[idx]=>key for (idx, key) in enumerate(arg)]...) | ||
_, hashes, _ = search(ic, search_dict) | ||
μ_runs = zeros(length(hashes)) | ||
for (idx_d, d) in enumerate(hashes) | ||
if isfile(joinpath(head_dir, d, results_file)) | ||
results = load(joinpath(head_dir, d, results_file)) | ||
μ_runs[idx_d] = clean_func(results) | ||
# catch e | ||
else | ||
# println(joinpath(head_dir, d, results_file)) | ||
μ_runs[idx_d] = Inf | ||
end | ||
end | ||
μ[idx] = mean(μ_runs) | ||
σ[idx] = ci_const * std(μ_runs)/sqrt(length(μ_runs)) | ||
next!(p3) | ||
end | ||
|
||
if plt == nothing | ||
plt = plot(sweep_args_clean(diff_dict[sweep_arg]), μ, yerror=σ, ylim=ylim, label="$(line_arg)=$(l_a)"; kwargs...) | ||
else | ||
plot!(plt, sweep_args_clean(diff_dict[sweep_arg]), μ, yerror=σ, label="$(line_arg)=$(l_a)"; kwargs...) | ||
end | ||
next!(p2) | ||
end | ||
|
||
if !isdir(joinpath(exp_loc, save_dir)) | ||
mkdir(joinpath(exp_loc, save_dir)) | ||
end | ||
|
||
save_file_name = join(["$(key)_$(arg[idx])" for (idx, key) in enumerate(product_args)], "_") | ||
|
||
savefig(plt, joinpath(exp_loc, save_dir, "$(save_file_name).pdf")) | ||
next!(p1) | ||
end | ||
|
||
|
||
end | ||
|
||
""" | ||
sensitivity_best_arg | ||
plots a sensitivity curve over sweep arg with all settings producted according to product_args selecting the best over best_arg | ||
""" | ||
function sensitivity_best_arg(exp_loc, | ||
sweep_arg::String, | ||
best_arg::String, | ||
product_args::Vector{String}; | ||
results_file="results.jld2", | ||
clean_func=identity, | ||
sweep_args_clean=identity, | ||
compare=(new, old)->new<old, | ||
save_dir="sensitivity_best", | ||
ylim=nothing, ci_const = 1.96, kwargs...) | ||
|
||
gr() | ||
|
||
if exp_loc[end] == '/' | ||
exp_loc = exp_loc[1:end-1] | ||
end | ||
head_dir = dirname(exp_loc) | ||
|
||
ic = ItemCollection(exp_loc) | ||
diff_dict = diff(ic.items) | ||
args = Iterators.product([diff_dict[arg] for arg in product_args]...) | ||
|
||
p1 = ProgressMeter.Progress(length(args), 0.1, "Args: ", offset=0) | ||
|
||
for arg in args | ||
|
||
plt=nothing | ||
|
||
p2 = ProgressMeter.Progress(length(diff_dict[best_arg]), 0.1, "$(best_arg): ", offset=1) | ||
|
||
μ = zeros(length(diff_dict[sweep_arg])) | ||
fill!(μ, Inf) | ||
σ = zeros(length(diff_dict[sweep_arg])) | ||
|
||
for (idx_line, b_a) in enumerate(diff_dict[best_arg]) | ||
|
||
p3 = ProgressMeter.Progress(length(diff_dict[sweep_arg]), 0.1, "$(sweep_arg): ", offset=2) | ||
for (idx, s_a) in enumerate(diff_dict[sweep_arg]) | ||
search_dict = Dict(sweep_arg=>s_a, best_arg=>b_a, [product_args[idx]=>key for (idx, key) in enumerate(arg)]...) | ||
_, hashes, _ = search(ic, search_dict) | ||
μ_runs = zeros(length(hashes)) | ||
for (idx_d, d) in enumerate(hashes) | ||
if isfile(joinpath(head_dir, d, results_file)) | ||
results = load(joinpath(head_dir, d, results_file)) | ||
μ_runs[idx_d] = clean_func(results) | ||
# catch e | ||
else | ||
# println(joinpath(head_dir, d, results_file)) | ||
μ_runs[idx_d] = Inf | ||
end | ||
end | ||
if compare(mean(μ_runs), μ[idx]) | ||
μ[idx] = mean(μ_runs) | ||
σ[idx] = ci_const * std(μ_runs)/sqrt(length(μ_runs)) | ||
end | ||
next!(p3) | ||
end | ||
|
||
next!(p2) | ||
end | ||
|
||
if plt == nothing | ||
plt = plot(sweep_args_clean(diff_dict[sweep_arg]), μ, yerror=σ, ylim=ylim; kwargs...) | ||
else | ||
plot!(plt, sweep_args_clean(diff_dict[sweep_arg]), μ, yerror=σ; kwargs...) | ||
end | ||
|
||
if !isdir(joinpath(exp_loc, save_dir)) | ||
mkdir(joinpath(exp_loc, save_dir)) | ||
end | ||
|
||
save_file_name = join(["$(key)_$(arg[idx])" for (idx, key) in enumerate(product_args)], "_") | ||
|
||
savefig(plt, joinpath(exp_loc, save_dir, "$(save_file_name).pdf")) | ||
next!(p1) | ||
end | ||
|
||
|
||
end | ||
|
||
|
||
|
||
function plot_sens_files(file_list, line_settings_list, save_file="tmp.pdf", ci = 1.97; plot_back=gr, kwargs...) | ||
|
||
plot_back() | ||
|
||
plt = nothing | ||
|
||
for (idx, f) in enumerate(file_list) | ||
|
||
ret = load(f) | ||
println(ret) | ||
|
||
if plt == nothing | ||
plt = plot(ret["sens"], ret["avg"], ribbon=ci.*ret["std_err"]; line_settings_list[idx]..., kwargs...) | ||
else | ||
plot!(plt, ret["sens"], ret["avg"], ribbon=ci.*ret["std_err"]; line_settings_list[idx]..., kwargs...) | ||
end | ||
end | ||
|
||
savefig(plt, save_file) | ||
|
||
end | ||
|
||
function plot_lc_files(file_list, line_settings_list; save_file="tmp.pdf", ci=1.97, n=1, clean_func=identity, plot_back=gr, ignore_nans=false, kwargs...) | ||
|
||
plot_back() | ||
|
||
plt = nothing | ||
|
||
for (idx, f) in enumerate(file_list) | ||
|
||
ret = load(f) | ||
l = length(clean_func(ret["results"][1])) | ||
|
||
filtered = ret["results"] | ||
if ignore_nans | ||
filtered = filter(x->mean(x)!=NaN, ret["results"]) | ||
end | ||
avg = mean([mean(reshape(clean_func(v), n, Int64(l/n)); dims=1) for v in filtered])' | ||
std_err = (std([mean(reshape(clean_func(v), n, Int64(l/n)); dims=1) for v in filtered])./sqrt(length(filtered)))' | ||
|
||
x = 0:n:l | ||
|
||
if plt == nothing | ||
plt = plot(avg, ribbon=ci.*std_err; line_settings_list[idx]..., kwargs...) | ||
else | ||
plot!(plt, avg, ribbon=ci.*std_err; line_settings_list[idx]..., kwargs...) | ||
end | ||
end | ||
|
||
savefig(plt, save_file) | ||
|
||
end | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
# Managing save data, and creating a unified approach to the results.jld2 that is relatively extensible. | ||
|
||
|
||
|
||
|
Oops, something went wrong.