-
Notifications
You must be signed in to change notification settings - Fork 2
Matrix methods
Sergey Duyunov edited this page Nov 18, 2019
·
8 revisions
Constructors | ||||
---|---|---|---|---|
::new
|
Creates a random number matrix of a given size | |||
::build
|
Creates a matrix by applying a block | |||
::I
|
Alias for: identity | |||
::identity
|
Creates an identity matrix | |||
::[]
|
Creates a matrix where each argument is a row | |||
::column_vector |
||||
::columns |
||||
::combine |
||||
::diagonal |
||||
::empty |
||||
::hstack |
||||
::row_vector |
||||
::rows |
||||
::scalar |
||||
::unit |
||||
::vstack |
||||
::zero |
||||
Algebra | ||||
#*
|
Matrix multiplication | |||
#**
|
Matrix exponentiation | |||
#+
|
Matrix addition | |||
#+@
|
Unary plus | |||
#add!
|
Addition with a given matrix | |||
#-
|
Matrix subtraction | |||
#-@
|
Unary minus | |||
#sub!
|
Subtraction from a given matrix. | |||
#/
|
Matrix division (multiplication by the inverse) | |||
#adjugate
|
Returns the adjugate of the matrix. | |||
#abs
|
Absolute value of each element. | |||
#cofactor
|
Multiplying the first minor by (-1)**(row + column) | |||
#determinant
|
Determinant of the matrix | |||
#det
|
Alias for: determinant | |||
#laplace_expansion
|
Equivalent to the determinant method | |||
#cofactor_expansion
|
Alias for: laplace_expansion | |||
#conjugate
|
Returns the matrix unchanged | |||
#conj
|
Alias for: conjugate | |||
#hadamard_product
|
Hadamard product | |||
#entrywise_product
|
Alias for: hadamard_product | |||
#first_minor
|
Deletes given row and column | |||
#inverse
|
Returns the inverse of the matrix. | |||
#inv
|
Alias for: inverse | |||
#rank
|
Returns the rank of the matrix | |||
#round
|
Rounds each element | |||
#transpose
|
Creates a new matrix by transposing | |||
#t
|
Alias for: transpose | |||
#trace
|
Sum of diagonal elements | |||
#tr
|
Alias for: trace | |||
#imaginary
|
Returns a zero-matrix of the same size | |||
#imag
|
Alias for: imaginary | |||
#real
|
Returns the matrix unchanged | |||
#rect
|
Returns the real and imaginary parts of the matrix. | |||
#rectangular
|
Alias for: rect | |||
Comparators | ||||
#eql?
|
Checking matrices for equality | |||
#==
|
Checking matrices for equality | |||
#>=
|
Check for greater than or equa | |||
#<=
|
Check for less than or equa | |||
#>
|
Check for greater | |||
#<
|
Check for less | |||
Predicates | ||||
#antisymmetric?
|
Checks the matrix for antisymmetry | |||
#diagonal?
|
Checks the diagonality of the matrix | |||
#empty?
|
Check the matrix for emptiness | |||
#hermitian?
|
Alias for: symmetric? | |||
#lower_triangular?
|
Check the matrix for lower triangularity | |||
#upper_triangular?
|
Check the matrix for upper triangularity | |||
#normal?
|
Checking the normality of the matrix | |||
#orthogonal?
|
Checking the matrix for orthogonality | |||
#permutation?
|
Checks if the matrix is a permutation matrix | |||
#regular?
|
Checking whether the matrix is regular | |||
#singular?
|
Checking whether the matrix is singular | |||
#skew_symmetric?
|
Alias for: antisymmetric? | |||
#square?
|
Check if the matrix is square | |||
#symmetric?
|
Check if the matrix is symmetric | |||
#unitary?
|
Check if the matrix is unitary | |||
#zero?
|
Check if the matrix is zero-matrix | |||
#real?
|
Always return true |