Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/jacob/graph-making' into jacob/g…
Browse files Browse the repository at this point in the history
…raph-making
  • Loading branch information
jacobbieker committed Nov 22, 2023
2 parents 71b481d + 7c1141c commit 7b19195
Show file tree
Hide file tree
Showing 2 changed files with 57 additions and 34 deletions.
2 changes: 1 addition & 1 deletion graph_weather/models/graphs/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
"""Set of graph classes for generating different meshes"""
"""Set of graph classes for generating different meshes"""
89 changes: 56 additions & 33 deletions graph_weather/models/graphs/ico.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
'''
"""
Creating geodesic icosahedron with given (integer) subdivision frequency (and
not by recursively applying Loop-like subdivision).
Expand Down Expand Up @@ -29,13 +29,13 @@
This code is copied in as there is an improvement in the inside_points function that
is not merged in that speeds up generation 5-8x. See https://github.com/vedranaa/icosphere/pull/3
'''
"""

import numpy as np


def icosphere(nu=1, nr_verts=None):
'''
"""
Returns a geodesic icosahedron with subdivision frequency nu. Frequency
nu = 1 returns regular unit icosahedron, and nu>1 preformes subdivision.
If nr_verts is given, nu will be adjusted such that icosphere contains
Expand All @@ -52,7 +52,7 @@ def icosphere(nu=1, nr_verts=None):
subvertices : vertex list, numpy array of shape (20+10*(nu+1)*(nu-1)/2, 3)
subfaces : face list, numpy array of shape (10*n**2, 3)
'''
"""

# Unit icosahedron
(vertices, faces) = icosahedron()
Expand All @@ -66,33 +66,53 @@ def icosphere(nu=1, nr_verts=None):
# Subdividing
if nu > 1:
(vertices, faces) = subdivide_mesh(vertices, faces, nu)
vertices = vertices / np.sqrt(np.sum(vertices ** 2, axis=1, keepdims=True))
vertices = vertices / np.sqrt(np.sum(vertices**2, axis=1, keepdims=True))

return (vertices, faces)


def icosahedron():
'''' Regular unit icosahedron. '''
"""' Regular unit icosahedron."""

# 12 principal directions in 3D space: points on an unit icosahedron
phi = (1 + np.sqrt(5)) / 2
vertices = np.array([
[0, 1, phi], [0, -1, phi], [1, phi, 0],
[-1, phi, 0], [phi, 0, 1], [-phi, 0, 1]]) / np.sqrt(1 + phi ** 2)
vertices = np.array(
[[0, 1, phi], [0, -1, phi], [1, phi, 0], [-1, phi, 0], [phi, 0, 1], [-phi, 0, 1]]
) / np.sqrt(1 + phi**2)
vertices = np.r_[vertices, -vertices]

# 20 faces
faces = np.array([
[0, 5, 1], [0, 3, 5], [0, 2, 3], [0, 4, 2], [0, 1, 4],
[1, 5, 8], [5, 3, 10], [3, 2, 7], [2, 4, 11], [4, 1, 9],
[7, 11, 6], [11, 9, 6], [9, 8, 6], [8, 10, 6], [10, 7, 6],
[2, 11, 7], [4, 9, 11], [1, 8, 9], [5, 10, 8], [3, 7, 10]], dtype=int)
faces = np.array(
[
[0, 5, 1],
[0, 3, 5],
[0, 2, 3],
[0, 4, 2],
[0, 1, 4],
[1, 5, 8],
[5, 3, 10],
[3, 2, 7],
[2, 4, 11],
[4, 1, 9],
[7, 11, 6],
[11, 9, 6],
[9, 8, 6],
[8, 10, 6],
[10, 7, 6],
[2, 11, 7],
[4, 9, 11],
[1, 8, 9],
[5, 10, 8],
[3, 7, 10],
],
dtype=int,
)

return (vertices, faces)


def subdivide_mesh(vertices, faces, nu):
'''
"""
Subdivides mesh by adding vertices on mesh edges and faces. Each edge
will be divided in nu segments. (For example, for nu=2 one vertex is added
on each mesh edge, for nu=3 two vertices are added on each mesh edge and
Expand All @@ -113,14 +133,14 @@ def subdivide_mesh(vertices, faces, nu):
Author: vand at dtu.dk, 8.12.2017. Translated to python 6.4.2021
'''
"""

edges = np.r_[faces[:, :-1], faces[:, 1:], faces[:, [0, 2]]]
edges = np.unique(np.sort(edges, axis=1), axis=0)
F = faces.shape[0]
V = vertices.shape[0]
E = edges.shape[0]
subfaces = np.empty((F * nu ** 2, 3), dtype=int)
subfaces = np.empty((F * nu**2, 3), dtype=int)
subvertices = np.empty((V + E * (nu - 1) + F * (nu - 1) * (nu - 2) // 2, 3))

subvertices[:V] = vertices
Expand All @@ -143,41 +163,44 @@ def subdivide_mesh(vertices, faces, nu):
for e in range(E):
edge = edges[e]
for k in range(nu - 1):
subvertices[V + e * (nu - 1) + k] = (w[-1 - k] * vertices[edge[0]]
+ w[k] * vertices[edge[1]])
subvertices[V + e * (nu - 1) + k] = (
w[-1 - k] * vertices[edge[0]] + w[k] * vertices[edge[1]]
)

# At this point we have E(nu-1)+V vertices, and we add (nu-1)*(nu-2)/2
# vertices per face (on-face vertices).
r = np.arange(nu - 1)
for f in range(F):
# First, fixing connectivity. We get hold of the indices of all
# vertices invoved in this subface: original, on-edges and on-faces.
T = np.arange(f * (nu - 1) * (nu - 2) // 2 + E * (nu - 1) + V,
(f + 1) * (nu - 1) * (nu - 2) // 2 + E * (nu - 1) + V) # will be added
T = np.arange(
f * (nu - 1) * (nu - 2) // 2 + E * (nu - 1) + V,
(f + 1) * (nu - 1) * (nu - 2) // 2 + E * (nu - 1) + V,
) # will be added
eAB = edge_indices[faces[f, 0]][faces[f, 1]]
eAC = edge_indices[faces[f, 0]][faces[f, 2]]
eBC = edge_indices[faces[f, 1]][faces[f, 2]]
AB = reverse(abs(eAB) * (nu - 1) + V + r, eAB < 0) # already added
AC = reverse(abs(eAC) * (nu - 1) + V + r, eAC < 0) # already added
BC = reverse(abs(eBC) * (nu - 1) + V + r, eBC < 0) # already added
VEF = np.r_[faces[f], AB, AC, BC, T]
subfaces[f * nu ** 2:(f + 1) * nu ** 2, :] = VEF[reordered_template]
subfaces[f * nu**2 : (f + 1) * nu**2, :] = VEF[reordered_template]
# Now geometry, computing positions of face vertices.
subvertices[T, :] = inside_points(subvertices[AB, :], subvertices[AC, :])

return (subvertices, subfaces)


def reverse(vector, flag):
'''' For reversing the direction of an edge. '''
"""' For reversing the direction of an edge."""

if flag:
vector = vector[::-1]
return (vector)
return vector


def faces_template(nu):
'''
"""
Template for linking subfaces 0
in a subdivision of a face. / \
Returns faces with vertex 1---2
Expand All @@ -187,7 +210,7 @@ def faces_template(nu):
6---7---8---9
/ \ / \ / \ / \
10--11--12--13--14
'''
"""

faces = []
# looping in layers of triangles
Expand All @@ -200,11 +223,11 @@ def faces_template(nu):
# adding the last (unpaired, rightmost) triangle
faces.append([i + vertex0, i + vertex0 + skip, i + vertex0 + skip + 1])

return (np.array(faces))
return np.array(faces)


def vertex_ordering(nu):
'''
"""
Permutation for ordering of 0
face vertices which transformes / \
reading-order indexing into indexing 3---6
Expand All @@ -214,7 +237,7 @@ def vertex_ordering(nu):
5---13--14--8
/ \ / \ / \ / \
1---9--10--11---2
'''
"""

left = [j for j in range(3, nu + 2)]
right = [j for j in range(nu + 2, 2 * nu + 1)]
Expand All @@ -224,11 +247,11 @@ def vertex_ordering(nu):
o = [0] # topmost corner
for i in range(nu - 1):
o.append(left[i])
o = o + inside[i * (i - 1) // 2:i * (i + 1) // 2]
o = o + inside[i * (i - 1) // 2 : i * (i + 1) // 2]
o.append(right[i])
o = o + [1] + bottom + [2]

return (np.array(o))
return np.array(o)


def inside_points(vAB, vAC):
Expand Down Expand Up @@ -258,8 +281,8 @@ def inside_points(vAB, vAC):
j = i + 1
interp_multipliers = (np.arange(1, j) / j)[:, None]
out.append(
np.multiply(interp_multipliers, vAC[i, None]) +
np.multiply(1 - interp_multipliers, vAB[i, None])
np.multiply(interp_multipliers, vAC[i, None])
+ np.multiply(1 - interp_multipliers, vAB[i, None])
)
return np.concatenate(out)

Expand Down

0 comments on commit 7b19195

Please sign in to comment.