-
Notifications
You must be signed in to change notification settings - Fork 200
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Split LLMPipeline by several files (#1454)
- Loading branch information
1 parent
ba0224f
commit 0c5f03b
Showing
6 changed files
with
746 additions
and
664 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
|
||
// Copyright (C) 2023-2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include "llm_pipeline_base.hpp" | ||
|
||
#include "openvino/genai/continuous_batching_pipeline.hpp" | ||
|
||
namespace ov::genai { | ||
|
||
Tokenizer dont_construct() { | ||
OPENVINO_THROW("Continuous Batching backend can't be constructed" | ||
"from ireq because the model must be transformed"); | ||
} | ||
|
||
template<class... Ts> struct overloaded : Ts... {using Ts::operator()...;}; | ||
template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>; | ||
|
||
class ContinuousBatchingAdapter final : public LLMPipelineImplBase { | ||
ContinuousBatchingPipeline m_impl; | ||
public: | ||
ContinuousBatchingAdapter( | ||
const ov::InferRequest& request, | ||
const Tokenizer& tokenizer, | ||
OptionalGenerationConfig generation_config | ||
): LLMPipelineImplBase{dont_construct(), GenerationConfig{}}, | ||
m_impl{std::filesystem::path{}, SchedulerConfig{}, std::string{}} { } | ||
|
||
ContinuousBatchingAdapter( | ||
const std::filesystem::path& models_path, | ||
const Tokenizer& tokenizer, | ||
const SchedulerConfig& scheduler_config, | ||
const std::string& device, | ||
const ov::AnyMap& plugin_config | ||
): LLMPipelineImplBase{tokenizer, GenerationConfig()}, m_impl{ | ||
models_path.string(), | ||
tokenizer, | ||
scheduler_config, | ||
device, | ||
plugin_config} { | ||
m_generation_config = m_impl.get_config(); | ||
} | ||
|
||
ContinuousBatchingAdapter( | ||
const std::string& model_str, | ||
const ov::Tensor& weights_tensor, | ||
const Tokenizer& tokenizer, | ||
const SchedulerConfig& scheduler_config, | ||
const std::string& device, | ||
const ov::AnyMap& plugin_config, | ||
const ov::genai::GenerationConfig& generation_config | ||
): LLMPipelineImplBase{tokenizer, GenerationConfig()}, m_impl{ | ||
model_str, | ||
weights_tensor, | ||
tokenizer, | ||
scheduler_config, | ||
device, | ||
plugin_config, | ||
generation_config} {} | ||
|
||
ContinuousBatchingAdapter( | ||
const std::filesystem::path& models_path, | ||
const SchedulerConfig& scheduler_config, | ||
const std::string& device, | ||
const ov::AnyMap& plugin_config | ||
): LLMPipelineImplBase{Tokenizer(models_path), GenerationConfig()}, m_impl{ | ||
models_path.string(), | ||
m_tokenizer, | ||
scheduler_config, | ||
device, | ||
plugin_config} { | ||
m_generation_config = m_impl.get_config(); | ||
} | ||
|
||
DecodedResults generate( | ||
StringInputs inputs, | ||
OptionalGenerationConfig generation_config, | ||
StreamerVariant streamer | ||
) override { | ||
std::vector<std::string> prompts = std::visit(overloaded{ | ||
[](const std::string& prompt) { | ||
return std::vector{prompt}; | ||
}, | ||
[](std::vector<std::string>& prompts) { | ||
return prompts; | ||
} | ||
}, inputs); | ||
const GenerationConfig& config = generation_config.has_value() ? *generation_config : m_generation_config; | ||
// -1 == config.eos_token_id and config.validate() are handled in m_impl. | ||
std::vector<GenerationResult> generated = m_impl.generate( | ||
prompts, | ||
std::vector<GenerationConfig>{prompts.size(), config}, | ||
streamer | ||
); | ||
std::vector<std::string> plain_replies; | ||
std::vector<float> plain_scores; | ||
for (GenerationResult& res : generated) { | ||
OPENVINO_ASSERT(res.m_status == GenerationStatus::FINISHED || res.m_status == GenerationStatus::DROPPED_BY_HANDLE, "Got unfinished GenerationStatus"); | ||
std::move(res.m_generation_ids.begin(), res.m_generation_ids.end(), std::back_inserter(plain_replies)); | ||
std::move(res.m_scores.begin(), res.m_scores.end(), std::back_inserter(plain_scores)); | ||
} | ||
return {std::move(plain_replies), std::move(plain_scores)}; | ||
} | ||
|
||
EncodedResults generate( | ||
const EncodedInputs& inputs, | ||
OptionalGenerationConfig generation_config, | ||
StreamerVariant streamer | ||
) override { | ||
std::vector<ov::Tensor> input_ids = std::visit(overloaded{ | ||
[](const ov::Tensor& inp) { | ||
size_t batch_size = inp.get_shape().at(0); | ||
if (1 == batch_size) { | ||
return std::vector{inp}; | ||
} | ||
std::vector<ov::Tensor> input_ids; | ||
input_ids.reserve(batch_size); | ||
size_t max_len = inp.get_shape().at(1); | ||
const int64_t* const source = inp.data<const int64_t>(); | ||
for (size_t batch_id = 0; batch_id < batch_size; ++batch_id) { | ||
input_ids.emplace_back(ov::element::i64, ov::Shape(1, max_len)); | ||
int64_t* destination = input_ids.back().data<int64_t>(); | ||
std::copy_n(source + batch_id * max_len, max_len, destination); | ||
} | ||
return input_ids; | ||
}, | ||
[](const TokenizedInputs& inp) { | ||
size_t batch_size = inp.input_ids.get_shape().at(0); | ||
std::vector<ov::Tensor> input_ids; | ||
input_ids.reserve(batch_size); | ||
size_t max_len = inp.input_ids.get_shape().at(1); | ||
const int64_t* const source = inp.input_ids.data<const int64_t>(); | ||
const int64_t* const attention_mask = inp.attention_mask.data<const int64_t>(); | ||
for (size_t batch_id = 0; batch_id < batch_size; ++batch_id) { | ||
input_ids.emplace_back(ov::element::i64, ov::Shape(1, max_len)); | ||
int64_t* destination = input_ids.back().data<int64_t>(); | ||
size_t copy_count = 0; | ||
for (size_t idx = 0; idx < max_len; ++idx) { | ||
if (1 == attention_mask[batch_id * max_len + idx]) { | ||
destination[copy_count++] = source[batch_id * max_len + idx]; | ||
} | ||
} | ||
input_ids.back().set_shape({1, copy_count}); | ||
} | ||
return input_ids; | ||
} | ||
}, inputs); | ||
|
||
const GenerationConfig& config = generation_config.has_value() ? *generation_config : m_generation_config; | ||
// -1 == config.eos_token_id and config.validate() are handled in m_impl. | ||
std::vector<EncodedGenerationResult> generated = m_impl.generate(input_ids, std::vector<GenerationConfig>{input_ids.size(), config}, streamer); | ||
std::vector<std::vector<int64_t>> plain_tokens; | ||
std::vector<float> plain_scores; | ||
for (EncodedGenerationResult& res : generated) { | ||
OPENVINO_ASSERT(res.m_status == GenerationStatus::FINISHED || res.m_status == GenerationStatus::DROPPED_BY_HANDLE, "Got unfinished GenerationStatus"); | ||
std::move(res.m_generation_ids.begin(), res.m_generation_ids.end(), std::back_inserter(plain_tokens)); | ||
std::move(res.m_scores.begin(), res.m_scores.end(), std::back_inserter(plain_scores)); | ||
} | ||
return {std::move(plain_tokens), std::move(plain_scores)}; | ||
} | ||
|
||
void start_chat(const std::string& system_message) override { | ||
m_impl.start_chat(); | ||
}; | ||
|
||
void finish_chat() override { | ||
m_impl.finish_chat(); | ||
}; | ||
}; | ||
|
||
} // namespace ov::genai |
Oops, something went wrong.