-
Notifications
You must be signed in to change notification settings - Fork 200
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[WWB]: Add ImageText-to-Image pipeline validation (#1373)
CVS-159223 --------- Co-authored-by: Ilya Lavrenov <[email protected]>
- Loading branch information
1 parent
842c99e
commit c9d63b2
Showing
6 changed files
with
464 additions
and
238 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
import os | ||
from typing import Any, Union | ||
|
||
import datasets | ||
import pandas as pd | ||
from tqdm import tqdm | ||
from transformers import set_seed | ||
import torch | ||
import openvino_genai | ||
|
||
from .registry import register_evaluator | ||
from .text2image_evaluator import Text2ImageEvaluator | ||
|
||
from .whowhat_metrics import ImageSimilarity | ||
|
||
|
||
def preprocess_fn(example): | ||
return { | ||
"prompts": example["Instruction_VLM-LLM"], | ||
"images": example["source_img"], | ||
} | ||
|
||
|
||
def prepare_default_data(num_samples=None): | ||
DATASET_NAME = "paint-by-inpaint/PIPE" | ||
NUM_SAMPLES = 10 if num_samples is None else num_samples | ||
set_seed(42) | ||
default_dataset = datasets.load_dataset( | ||
DATASET_NAME, split="test", streaming=True | ||
).filter(lambda example: example["Instruction_VLM-LLM"] != "").take(NUM_SAMPLES) | ||
return default_dataset.map( | ||
lambda x: preprocess_fn(x), remove_columns=default_dataset.column_names | ||
) | ||
|
||
|
||
@register_evaluator("image-to-image") | ||
class Image2ImageEvaluator(Text2ImageEvaluator): | ||
def __init__( | ||
self, | ||
base_model: Any = None, | ||
gt_data: str = None, | ||
test_data: Union[str, list] = None, | ||
metrics="similarity", | ||
similarity_model_id: str = "openai/clip-vit-large-patch14", | ||
num_inference_steps=4, | ||
crop_prompts=True, | ||
num_samples=None, | ||
gen_image_fn=None, | ||
seed=42, | ||
is_genai=False, | ||
) -> None: | ||
assert ( | ||
base_model is not None or gt_data is not None | ||
), "Text generation pipeline for evaluation or ground trush data must be defined" | ||
|
||
self.test_data = test_data | ||
self.metrics = metrics | ||
self.crop_prompt = crop_prompts | ||
self.num_samples = num_samples | ||
self.num_inference_steps = num_inference_steps | ||
self.seed = seed | ||
self.similarity = None | ||
self.similarity = ImageSimilarity(similarity_model_id) | ||
self.last_cmp = None | ||
self.gt_dir = os.path.dirname(gt_data) | ||
self.generation_fn = gen_image_fn | ||
self.is_genai = is_genai | ||
self.resolution = None | ||
|
||
if base_model: | ||
self.gt_data = self._generate_data( | ||
base_model, gen_image_fn, os.path.join(self.gt_dir, "reference") | ||
) | ||
else: | ||
self.gt_data = pd.read_csv(gt_data, keep_default_na=False) | ||
|
||
def _generate_data(self, model, gen_image_fn=None, image_dir="reference"): | ||
def default_gen_image_fn(model, prompt, image, num_inference_steps, generator=None): | ||
with torch.no_grad(): | ||
output = model( | ||
prompt, | ||
image=image, | ||
num_inference_steps=num_inference_steps, | ||
output_type="pil", | ||
strength=0.8, | ||
generator=generator, | ||
) | ||
return output.images[0] | ||
|
||
generation_fn = gen_image_fn or default_gen_image_fn | ||
|
||
if self.test_data: | ||
if isinstance(self.test_data, str): | ||
data = pd.read_csv(self.test_data) | ||
else: | ||
if isinstance(self.test_data, dict): | ||
assert "prompts" in self.test_data | ||
assert "images" in self.test_data | ||
data = dict(self.test_data) | ||
data = pd.DataFrame.from_dict(data) | ||
else: | ||
data = pd.DataFrame.from_dict(prepare_default_data(self.num_samples)) | ||
|
||
prompts = data["prompts"] | ||
images = data["images"] | ||
output_images = [] | ||
rng = torch.Generator(device="cpu") | ||
|
||
if not os.path.exists(image_dir): | ||
os.makedirs(image_dir) | ||
|
||
for i, (prompt, image) in tqdm(enumerate(zip(prompts, images)), desc="Evaluate pipeline"): | ||
set_seed(self.seed) | ||
rng = rng.manual_seed(self.seed) | ||
output = generation_fn( | ||
model, | ||
prompt, | ||
image=image, | ||
num_inference_steps=self.num_inference_steps, | ||
generator=openvino_genai.TorchGenerator(self.seed) if self.is_genai else rng | ||
) | ||
image_path = os.path.join(image_dir, f"{i}.png") | ||
output.save(image_path) | ||
output_images.append(image_path) | ||
|
||
res_data = {"prompts": list(prompts), "images": output_images} | ||
df = pd.DataFrame(res_data) | ||
|
||
return df |
Oops, something went wrong.