Skip to content

Commit

Permalink
add util to build tripolar grid (#228)
Browse files Browse the repository at this point in the history
* add util to build tripolar grid

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* linting

* mend

* fix test

* Apply suggestions from code review

Co-authored-by: David Huard <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* make function from ocean_model_grid_generator private

---------

Co-authored-by: raphael <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: David Huard <[email protected]>
  • Loading branch information
4 people authored Jan 27, 2023
1 parent e8b9de7 commit 11b942b
Show file tree
Hide file tree
Showing 2 changed files with 163 additions and 0 deletions.
17 changes: 17 additions & 0 deletions xesmf/tests/test_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,3 +33,20 @@ def test_grid_global_bad_resolution():

with pytest.warns(UserWarning):
xe.util.grid_global(1.23, 1.5)


def test_simple_tripolar_grid():

lon, lat = xe.util.simple_tripolar_grid(360, 180, lat_cap=60, lon_cut=-300.0)

assert lon.min() >= -300.0
assert lon.max() <= 360.0 - 300.0
assert lat.min() >= -90
assert lat.max() <= 90

lon, lat = xe.util.simple_tripolar_grid(180, 90, lat_cap=60, lon_cut=-300.0)

assert lon.min() >= -300.0
assert lon.max() <= 360.0 - 300.0
assert lat.min() >= -90
assert lat.max() <= 90
146 changes: 146 additions & 0 deletions xesmf/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,3 +210,149 @@ def split_polygons_and_holes(polys):
i_hol.extend([i] * len(poly.interiors))

return exteriors, holes, i_ext, i_hol


# Constants
PI_180 = np.pi / 180.0
_default_Re = 6371.0e3 # MIDAS
HUGE = 1.0e30


def simple_tripolar_grid(nlons, nlats, lat_cap=60, lon_cut=-300):
"""Generate a simple tripolar grid, regular under `lat_cap`.
Parameters
----------
nlons: int
Number of longitude points.
nlats: int
Number of latitude points.
lat_cap: float
Latitude of the northern cap.
lon_cut: float
Longitude of the periodic boundary.
"""

# first generate the bipolar cap for north poles
nj_cap = np.rint(nlats * lat_cap / 180.0).astype('int')

lams, phis, _, _ = _generate_bipolar_cap_mesh(
nlons, nj_cap, lat_cap, lon_cut, ensure_nj_even=True
)

# then extend south
lams_south_1d = lams[0, :]
phis_south_1d = np.linspace(-90, lat_cap, nlats - nj_cap + 1)[:-1]

lams_south, phis_south = np.meshgrid(lams_south_1d, phis_south_1d)

# concatenate the 2 parts
lon = np.concatenate([lams_south, lams], axis=0)
lat = np.concatenate([phis_south, phis], axis=0)

return lon, lat


# these functions are copied from https://github.com/NOAA-GFDL/ocean_model_grid_generator
# rather than using the package as a dependency


def _bipolar_projection(lamg, phig, lon_bp, rp, metrics_only=False):
"""Makes a stereographic bipolar projection of the input coordinate mesh (lamg,phig)
Returns the projected coordinate mesh and their metric coefficients (h^-1).
The input mesh must be a regular spherical grid capping the pole with:
latitudes between 2*arctan(rp) and 90 degrees
longitude between lon_bp and lonp+360
"""
# symmetry meridian resolution fix
phig = 90 - 2 * np.arctan(np.tan(0.5 * (90 - phig) * PI_180) / rp) / PI_180
tmp = _mdist(lamg, lon_bp) * PI_180
sinla = np.sin(tmp) # This makes phis symmetric
sphig = np.sin(phig * PI_180)
alpha2 = (np.cos(tmp)) ** 2 # This makes dy symmetric
beta2_inv = (np.tan(phig * PI_180)) ** 2
rden = 1.0 / (1.0 + alpha2 * beta2_inv)

if not metrics_only:
B = sinla * np.sqrt(rden) # Actually two equations +- |B|
# Deal with beta=0
B = np.where(np.abs(beta2_inv) > HUGE, 0.0, B)
lamc = np.arcsin(B) / PI_180
# But this equation accepts 4 solutions for a given B, {l, 180-l, l+180, 360-l }
# We have to pickup the "correct" root.
# One way is simply to demand lamc to be continuous with lam on the equator phi=0
# I am sure there is a more mathematically concrete way to do this.
lamc = np.where((lamg - lon_bp > 90) & (lamg - lon_bp <= 180), 180 - lamc, lamc)
lamc = np.where((lamg - lon_bp > 180) & (lamg - lon_bp <= 270), 180 + lamc, lamc)
lamc = np.where((lamg - lon_bp > 270), 360 - lamc, lamc)
# Along symmetry meridian choose lamc
lamc = np.where(
(lamg - lon_bp == 90), 90, lamc
) # Along symmetry meridian choose lamc=90-lon_bp
lamc = np.where(
(lamg - lon_bp == 270), 270, lamc
) # Along symmetry meridian choose lamc=270-lon_bp
lams = lamc + lon_bp

# Project back onto the larger (true) sphere so that the projected equator shrinks to latitude \phi_P=lat0_tp
# then we have tan(\phi_s'/2)=tan(\phi_p'/2)tan(\phi_c'/2)
A = sinla * sphig
chic = np.arccos(A)
phis = 90 - 2 * np.arctan(rp * np.tan(chic / 2)) / PI_180
# Calculate the Metrics
rden2 = 1.0 / (1 + (rp * np.tan(chic / 2)) ** 2)
M_inv = rp * (1 + (np.tan(chic / 2)) ** 2) * rden2
chig = (90 - phig) * PI_180
rden2 = 1.0 / (1 + (rp * np.tan(chig / 2)) ** 2)
N = rp * (1 + (np.tan(chig / 2)) ** 2) * rden2
N_inv = 1 / N
cos2phis = (np.cos(phis * PI_180)) ** 2

h_j_inv_t1 = cos2phis * alpha2 * (1 - alpha2) * beta2_inv * (1 + beta2_inv) * (rden**2)
h_j_inv_t2 = M_inv * M_inv * (1 - alpha2) * rden
h_j_inv = h_j_inv_t1 + h_j_inv_t2

# Deal with beta=0. Prove that cos2phis/alpha2 ---> 0 when alpha, beta ---> 0
h_j_inv = np.where(np.abs(beta2_inv) > HUGE, M_inv * M_inv, h_j_inv)
h_j_inv = np.sqrt(h_j_inv) * N_inv

h_i_inv = cos2phis * (1 + beta2_inv) * (rden**2) + M_inv * M_inv * alpha2 * beta2_inv * rden
# Deal with beta=0
h_i_inv = np.where(np.abs(beta2_inv) > HUGE, M_inv * M_inv, h_i_inv)
h_i_inv = np.sqrt(h_i_inv)

if not metrics_only:
return lams, phis, h_i_inv, h_j_inv
else:
return h_i_inv, h_j_inv


def _generate_bipolar_cap_mesh(Ni, Nj_ncap, lat0_bp, lon_bp, ensure_nj_even=True):
# Define a (lon,lat) coordinate mesh on the Northern hemisphere of the globe sphere
# such that the resolution of latg matches the desired resolution of the final grid along the symmetry meridian
print('Generating bipolar grid bounded at latitude ', lat0_bp)
if Nj_ncap % 2 != 0 and ensure_nj_even:
print(' Supergrid has an odd number of area cells!')
if ensure_nj_even:
print(" The number of j's is not even. Fixing this by cutting one row.")
Nj_ncap = Nj_ncap - 1

lon_g = lon_bp + np.arange(Ni + 1) * 360.0 / float(Ni)
lamg = np.tile(lon_g, (Nj_ncap + 1, 1))
latg0_cap = lat0_bp + np.arange(Nj_ncap + 1) * (90 - lat0_bp) / float(Nj_ncap)
phig = np.tile(latg0_cap.reshape((Nj_ncap + 1, 1)), (1, Ni + 1))
rp = np.tan(0.5 * (90 - lat0_bp) * PI_180)
lams, phis, h_i_inv, h_j_inv = _bipolar_projection(lamg, phig, lon_bp, rp)
h_i_inv = h_i_inv[:, :-1] * 2 * np.pi / float(Ni)
h_j_inv = h_j_inv[:-1, :] * PI_180 * (90 - lat0_bp) / float(Nj_ncap)
print(' number of js=', phis.shape[0])
return lams, phis, h_i_inv, h_j_inv


def _mdist(x1, x2):
"""Returns positive distance modulo 360."""
return np.minimum(np.mod(x1 - x2, 360.0), np.mod(x2 - x1, 360.0))


# end code from https://github.com/NOAA-GFDL/ocean_model_grid_generator

0 comments on commit 11b942b

Please sign in to comment.