-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #71 from afraniomelo/main
PR-67 Adaptation
- Loading branch information
Showing
4 changed files
with
245 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Tue 8 08:14:01 2024 | ||
@author: leovo | ||
""" | ||
|
||
|
||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
|
||
from ._generic_model import GenericModel | ||
|
||
############################################################################### | ||
|
||
class sklearnManifold(GenericModel): | ||
""" | ||
Interface for sklearn manifold learning models. | ||
Parameters | ||
---------- | ||
manifold_model: any manifold model that uses the sklearn interface. | ||
For example: | ||
* sklearn.manifold.MDS, | ||
* sklearn.manifold.Isomap, | ||
* sklearn.manifold.TSNE, | ||
* sklearn.manifold.LocallyLinearEmbedding, | ||
* etc.... | ||
""" | ||
|
||
########################################################################### | ||
|
||
def __init__(self, manifold_model): | ||
self.has_Y = False # Default set to False, because Manifold algorithms don't require a target variable | ||
self.manifold_model = manifold_model | ||
|
||
self.name = self.manifold_model.__class__.__name__ | ||
|
||
########################################################################### | ||
|
||
def train_core(self): | ||
""" | ||
Fits the manifold model using the training data. | ||
""" | ||
## Check if the input is a pandas DataFrame | ||
if isinstance(self.X_train, pd.DataFrame): | ||
# If it's a DataFrame, use the `.values` attribute to extract numpy array | ||
self.transformed_data = self.manifold_model.fit_transform(self.X_train.values) | ||
else: | ||
# If it's already a numpy array, use it directly | ||
self.transformed_data = self.manifold_model.fit_transform(self.X_train) | ||
|
||
########################################################################### | ||
|
||
def fit_transform(self,X): | ||
""" | ||
Fits the clustering method and returns the transformed data | ||
""" | ||
|
||
self.X_train=X #Attributing training data to variable X passed in the m | ||
self.train_core() #Training the method with train_core | ||
|
||
""" | ||
Returning the transformed data for visualization | ||
""" | ||
return self.transformed_data | ||
|
||
|
||
def map_from_X(self,X_test): | ||
""" | ||
Applies the transformation to a new dataset. Note that some manifold | ||
models, like TSNE, may not have a direct `transform` method. | ||
""" | ||
if hasattr(self.manifold_model, 'transform'): | ||
return self.manifold_model.transform(X_test) | ||
else: | ||
raise NotImplementedError("This manifold model does not support transformation on new data.") | ||
|
||
########################################################################### | ||
|
||
def set_hyperparameters(self, params_dict): | ||
""" | ||
Sets the hyperparameters for the manifold model. | ||
""" | ||
for key, value in params_dict.items(): | ||
setattr(self.manifold_model, key, value) | ||
|
||
########################################################################### | ||
|
||
def transform(self, X_test): | ||
""" | ||
Transforms the input data using the trained manifold model by calling map_from_X. | ||
Parameters | ||
---------- | ||
X_test: array-like or DataFrame | ||
The new data to transform. | ||
Returns | ||
------- | ||
transformed_data: array-like | ||
The transformed data. | ||
""" | ||
return self.map_from_X(X_test) | ||
|
||
def plot_embedding(self): | ||
""" | ||
Plots the 2D or 3D embedding resulting from the manifold model. | ||
""" | ||
if self.transformed_data.shape[1] == 2: | ||
plt.scatter(self.transformed_data[:, 0], self.transformed_data[:, 1], s=50, cmap='viridis') | ||
plt.title(f"{self.name} 2D Embedding") | ||
plt.xlabel("Component 1") | ||
plt.ylabel("Component 2") | ||
elif self.transformed_data.shape[1] == 3: | ||
fig = plt.figure() | ||
ax = fig.add_subplot(111, projection='3d') | ||
ax.scatter(self.transformed_data[:, 0], self.transformed_data[:, 1], self.transformed_data[:, 2], s=50, cmap='viridis') | ||
ax.set_title(f"{self.name} 3D Embedding") | ||
ax.set_xlabel("Component 1") | ||
ax.set_ylabel("Component 2") | ||
ax.set_zlabel("Component 3") | ||
else: | ||
print("Embedding dimensionality is not 2D or 3D; custom plotting is required.") | ||
|
||
def clusters_visualization(self, X): | ||
""" | ||
Fits the manifold model, transforms the data, and plots the resulting 2D or 3D embedding. | ||
Parameters | ||
---------- | ||
X: array-like or DataFrame | ||
The data to fit and transform. | ||
""" | ||
# Perform fit_transform and store the transformed data | ||
transformed_data = self.fit_transform(X) | ||
|
||
# Plot the 2D or 3D embedding based on the transformed data | ||
if transformed_data.shape[1] == 2: | ||
plt.scatter(transformed_data[:, 0], transformed_data[:, 1], s=50, cmap='viridis') | ||
plt.title(f"{self.name} 2D Embedding") | ||
plt.xlabel("Component 1") | ||
plt.ylabel("Component 2") | ||
elif transformed_data.shape[1] == 3: | ||
fig = plt.figure() | ||
ax = fig.add_subplot(111, projection='3d') | ||
ax.scatter(transformed_data[:, 0], transformed_data[:, 1], transformed_data[:, 2], s=50, cmap='viridis') | ||
ax.set_title(f"{self.name} 3D Embedding") | ||
ax.set_xlabel("Component 1") | ||
ax.set_ylabel("Component 2") | ||
ax.set_zlabel("Component 3") | ||
else: | ||
print("Embedding dimensionality is not 2D or 3D; custom plotting is required.") | ||
|
||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Fri Nov 8 09:34:01 2024 | ||
@author: Leonardo Voltolini | ||
""" | ||
|
||
import bibmon | ||
from sklearn.preprocessing import StandardScaler | ||
import numpy as np | ||
|
||
|
||
|
||
SC=StandardScaler() | ||
|
||
# loading the data from TEP | ||
df_train, df_test = bibmon.load_tennessee_eastman(train_id = 0, | ||
test_id = 1) | ||
|
||
#Transforming training and testing data using StandardScaler | ||
X_train=SC.fit_transform(df_train) | ||
X_test=SC.transform(df_test) | ||
|
||
#Concatenating train and the test, because manifold models normally | ||
#don't require a separation between training and testing folds | ||
X=np.concatenate( (X_train, X_test),axis=0) | ||
|
||
|
||
for attr in bibmon.__all__: | ||
a = getattr(bibmon,attr) | ||
if isinstance(a, type): | ||
''' | ||
Verifying if the attribute a is generic model from sklearn manifold | ||
and then applying the adequate model as wanted | ||
''' | ||
if a.__base__ == bibmon._generic_model.GenericModel: | ||
if a == bibmon.sklearnManifold: | ||
from sklearn.manifold import TSNE | ||
model = a(TSNE(n_components=2)) #Creating the model | ||
|
||
''' | ||
Computing the embeeding data from fit_transform function | ||
and subsequently plotting the clustering in the appropriate | ||
dimension | ||
''' | ||
embedded_data=model.fit_transform(X) | ||
model.plot_embedding() | ||
|
||
#%% | ||
|
||
''' | ||
This implementation does the same as previous cell, but, it applies | ||
a distinct model and automatically computes fit_transform and clusters | ||
visualization | ||
''' | ||
|
||
for attr in bibmon.__all__: | ||
a = getattr(bibmon,attr) | ||
if isinstance(a, type): | ||
if a.__base__ == bibmon._generic_model.GenericModel: | ||
if a == bibmon.sklearnManifold: | ||
from sklearn.manifold import MDS | ||
model = a(MDS(n_components=3)) | ||
|
||
''' | ||
The below code transforms the data and presents the | ||
graph for cluster visualization | ||
''' | ||
model.clusters_visualization(X) | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters