Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Tungsten web demo and API #103

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,9 @@

<br>

Run Version 2 on Colab, HuggingFace, and Replicate!
Run Version 2 on Colab, HuggingFace, Replicate, and Tungsten!

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/main/clip_interrogator.ipynb) [![Generic badge](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue.svg)](https://huggingface.co/spaces/pharma/CLIP-Interrogator) [![Replicate](https://replicate.com/pharmapsychotic/clip-interrogator/badge)](https://replicate.com/pharmapsychotic/clip-interrogator) [![Lambda](https://img.shields.io/badge/%CE%BB-Lambda-blue)](https://cloud.lambdalabs.com/demos/ml/CLIP-Interrogator)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/main/clip_interrogator.ipynb) [![Generic badge](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue.svg)](https://huggingface.co/spaces/pharma/CLIP-Interrogator) [![Replicate](https://replicate.com/pharmapsychotic/clip-interrogator/badge)](https://replicate.com/pharmapsychotic/clip-interrogator) [![Tungsten](https://tungsten.run/mjpyeon/clip-interrogator/_badge)](https://tungsten.run/mjpyeon/clip-interrogator) [![Lambda](https://img.shields.io/badge/%CE%BB-Lambda-blue)](https://cloud.lambdalabs.com/demos/ml/CLIP-Interrogator)

<br>

Expand Down
102 changes: 102 additions & 0 deletions tungsten_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
from typing import List

from tungstenkit import BaseIO, Field, Image, Option, define_model

from clip_interrogator import Config, Interrogator

CLIP_MODEL_NAMES = [
"ViT-L-14/openai",
"ViT-H-14/laion2b_s32b_b79k",
"ViT-bigG-14/laion2b_s39b_b160k",
]


class Input(BaseIO):
input_image: Image = Field(description="Input image")
clip_model_name: str = Option(
default="ViT-L-14/openai",
choices=[
"ViT-L-14/openai",
"ViT-H-14/laion2b_s32b_b79k",
"ViT-bigG-14/laion2b_s39b_b160k",
],
description="Choose ViT-L for Stable Diffusion 1, ViT-H for Stable Diffusion 2, or ViT-bigG for Stable Diffusion XL.",
)
mode: str = Option(
default="best",
choices=["best", "classic", "fast", "negative"],
description="Prompt mode (best takes 10-20 seconds, fast takes 1-2 seconds).",
)


class Output(BaseIO):
interrogated: str


@define_model(
input=Input,
output=Output,
gpu=True,
cuda_version="11.8",
python_version="3.10",
system_packages=["libgl1-mesa-glx", "libglib2.0-0"],
python_packages=[
"safetensors==0.3.3",
"tqdm==4.66.1",
"open_clip_torch==2.20.0",
"accelerate==0.22.0",
"transformers==4.33.1",
],
batch_size=1,
)
class CLIPInterrogator:
@staticmethod
def post_build():
"""Download weights"""
ci = Interrogator(
Config(
clip_model_name="ViT-L-14/openai",
clip_model_path="cache",
device="cpu",
)
)
for clip_model_name in CLIP_MODEL_NAMES:
ci.config.clip_model_name = clip_model_name
ci.load_clip_model()

def setup(self):
"""Load weights"""
self.ci = Interrogator(
Config(
clip_model_name="ViT-L-14/openai",
clip_model_path="cache",
device="cuda:0",
)
)

def predict(self, inputs: List[Input]) -> str:
"""Run a single prediction on the model"""
input = inputs[0]
image = input.input_image
clip_model_name = input.clip_model_name
mode = input.mode

image = image.to_pil_image()
self.switch_model(clip_model_name)
if mode == "best":
ret = self.ci.interrogate(image)
elif mode == "classic":
ret = self.ci.interrogate_classic(image)
elif mode == "fast":
ret = self.ci.interrogate_fast(image)
elif mode == "negative":
ret = self.ci.interrogate_negative(image)
else:
raise RuntimeError(f"Unknown mode: {ret}")

return [Output(interrogated=ret)]

def switch_model(self, clip_model_name: str):
if clip_model_name != self.ci.config.clip_model_name:
self.ci.config.clip_model_name = clip_model_name
self.ci.load_clip_model()