Showcase repository to demonstrate sustainability projects for Kubernetes.
export GITHUB_USER=lreimer
export GITHUB_TOKEN=
# for the GKE cluster setup
make create-gke-cluster
make bootstrap-gke-flux2
kubectl edit service kube-prometheus-stack-grafana -n monitoring
export GRAFANA_IP=`kubectl get service kube-prometheus-stack-grafana -n monitoring -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
kubectl edit service goldilocks-dashboard -n goldilocks
export GOLDILOCKS_IP=`kubectl get service goldilocks-dashboard -n goldilocks -o jsonpath="{.status.loadBalancer.ingress[0].ip}"`
# for the EKS cluster setup
make create-eks-cluster
make bootstrap-eks-flux2
kubectl edit service kube-prometheus-stack-grafana -n monitoring
export GRAFANA_HOSTNAME=`kubectl get service kube-prometheus-stack-grafana -n monitoring -o jsonpath="{.status.loadBalancer.ingress[0].hostname}"`
open https://app.electricitymaps.com/map
open https://cloud.google.com/compute/docs/regions-zones?hl=de#available
Depending on the Cloud provider there are different options to autoscale and thus rightsize the cluster itself, so that the number of nodes is sufficient to handle the current load but not more.
# add a deployment to demo cluster autoscaling
kubectl apply -f karpenter/inflate.yaml
# to trigger and watch a cluster ScaleUp
kubectl scale deployment inflate --replicas 5
kubectl get pods
kubectl describe pod inflate-644ff677b7-jgw8r
kubectl events
kubectl get nodes -w
# to trigger and watch a cluster ScaleDown
kubectl scale deployment inflate --replicas 0
kubectl get pods
kubectl events
kubectl get nodes -w
# create GKE cluster using gcloud CLI
gcloud container clusters create green-gke-k8s ... \
# enable GKE addons such as HPA support
--addons HttpLoadBalancing,HorizontalPodAutoscaling \
# enable VPA support
--enable-vertical-pod-autoscaling \
# enable cluster autoscaling
# use profile for moderate (Balanced) or aggessive (Optimize-utilization) mode
--enable-autoscaling \
--autoscaling-profile=optimize-utilization \
# specify initial node pool size and scaling limits
--num-nodes=1 \
--min-nodes=1 --max-nodes=5 \
# Ampere Altra Arm-Prozessor
# currently only available in certain regions
# see https://cloud.google.com/compute/docs/regions-zones?hl=de#available
--machine-type=t2a-standard-4
Karpenter automatically provisions new nodes in response to unschedulable pods. Karpenter does this by observing events within the Kubernetes cluster, and then sending commands to the underlying cloud provider. Currently, only EKS on AWS is supported. See https://karpenter.sh/docs/getting-started/getting-started-with-karpenter/
To easily install EKS with Karpenter, the eksctl
tool can be used because it brings Karpenter support. See https://eksctl.io/usage/eksctl-karpenter/
# explicitly enable goldilocks for the default namespace
kubectl label ns default goldilocks.fairwinds.com/enabled=true
# create resource and the VPA in recommender mode
kubectl apply -f vpa/hamster.yaml
kubectl apply -f vpa/vpa.yaml
# display the container recommendations for CPU and memory
kubectl describe vpa hamster-vpa
# use Goldilocks dashboard to display recommendations
kubectl get service goldilocks-dashboard -n goldilocks
open http://$GOLDILOCKS_IP:80
Don't waste resources! Many workloads on dev/qa environments stay running during weekends, non working hours or at night. kube-green is a simple K8s addon to automatically shutdown and restart resources based on when they are needed (or not).
apiVersion: kube-green.com/v1alpha1
kind: SleepInfo
metadata:
name: non-working-hours
spec:
weekdays: "1-5"
sleepAt: "18:00"
wakeUpAt: "08:00"
timeZone: "Europe/Rome"
suspendCronJobs: true
excludeRef:
- apiVersion: "apps/v1"
kind: Deployment
name: no-sleep-deployment
- matchLabels:
kube-green.dev/exclude: "true"
To see some details when the above SleepInfo
resource will be schedules next, you can have a look at the log output from the kube-green-controller-manager pod.
kubectl logs pod/kube-green-controller-manager-5855848d7f-dftxd -n kube-green
KEDA is a Kubernetes-based Event Driven Autoscaler that allows granular scaling of workloads in Kubernetes, based on multiple defined parameters, leveraging the concept of built for purpose scalers. To build a Kubernetes application with carbon aware scaling, we need to implement demand shaping that scales workloads based on the current carbon intensity of the location where the Kubernetes cluster is deployed. To achieve this using KEDA, you can set up the newly introduced KEDA carbon-aware scaler for your Kubernetes workloads and define your carbon intensity scaling thresholds. (https://www.tfir.io/carbon-aware-kubernetes-scaling-a-step-towards-greener-cloud-computing/)
# https://keda.sh/docs/2.12/scalers/metrics-api/
# https://keda.sh/docs/2.12/scalers/loki/
# https://keda.sh/docs/2.12/scalers/influxdb/
# deploy the normal KEDA scaler
kubectl apply -f keda/deploy-consumer.yaml
kubectl apply -f keda/deploy-publisher-job.yaml
# detailled installation instructions can be found in the Github repos
open https://github.com/Azure/carbon-aware-keda-operator
open https://github.com/Azure/kubernetes-carbon-intensity-exporter
# you will also need the sources
# install the intensity exporter
git clone https://github.com/Azure/kubernetes-carbon-intensity-exporter.git
cd kubernetes-carbon-intensity-exporter
export WATTTIME_USERNAME=lreimer
export WATTTIME_PASSWORD=
export LOCATION=se
# export LOCATION=westus
helm install carbon-intensity-exporter \
--set carbonDataExporter.region=$LOCATION \
--set wattTime.username=$WATTTIME_USERNAME \
--set wattTime.password=$WATTTIME_PASSWORD \
./charts/carbon-intensity-exporter
# check the carbon data
kubectl get pod -n kube-system | grep carbon-intensity-exporter
kubectl get cm -n kube-system carbon-intensity -o jsonpath='{.data}' | jq
kubectl get cm -n kube-system carbon-intensity -o jsonpath='{.binaryData.data}' | base64 --decode | jq
# install the carbon aware operator
git clone https://github.com/Azure/carbon-aware-keda-operator.git
cd carbon-aware-keda-operator
version=$(git describe --abbrev=0 --tags)
kubectl apply -f "https://github.com/Azure/carbon-aware-keda-operator/releases/download/${version}/carbonawarekedascaler-${version}.yaml"
# deply the carbon aware scaler
kubectl apply -f keda/deploy-consumer.yaml
kubectl apply -f keda/deploy-publisher-job.yaml
kubectl apply -f keda/carbon-aware-scaler.yaml
Kepler (Kubernetes-based Efficient Power Level Exporter) uses eBPF to probe energy related system stats and exports as Prometheus metrics.
# the installation via Helm chart works, but is somewhat incomplete / outdated
# instead, the installation from source via YAML is used
# only working on AWS, on GKE instances some host volumes can't be mounted
# using Ubuntu on AWS and GKE for now, this should solve the issue
git clone https://github.com/sustainable-computing-io/kepler.git
cd kepler
make build-manifest OPTS="PROMETHEUS_DEPLOY"
kubectl apply -f _output/generated-manifest/deployment.yaml
kubectl get all -n kepler
https://rossfairbanks.com/2023/07/12/carbon-aware-spatial-shifting-with-karmada/
https://github.com/hubblo-org/scaphandre
https://github.com/kubernetes-sigs/prometheus-adapter
- Cloud Native Sustainabilty Roadmap
- https://www.techtarget.com/searchitoperations/feature/How-to-approach-sustainability-in-IT-operations
- https://www.redhat.com/en/blog/how-kepler-project-working-advance-environmentally-conscious-efforts
M.-Leander Reimer (@lreimer), [email protected]
This software is provided under the MIT open source license, read the LICENSE
file for details.