Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Start of making bias correction work with Conv1d #2024

Open
wants to merge 2 commits into
base: develop
Choose a base branch
from

Conversation

V0XNIHILI
Copy link

In this PR, I already fixed all the issues that appear in the Python code when trying to run bias correction on models with nn.Conv1d layers in it. I do not know how to fix this remaining issue, so if anybody from the QUIC team could help me with that, that would be amazing.

Code to replicate

from aimet_torch import bias_correction
from aimet_torch.quantsim import QuantParams

def apply_bias_correction(model: torch.nn.Module, data_loader: DataLoader):
    """
    Applies Bias-Correction on the model.
    :param model: The model to quantize
    :param evaluator: Evaluator used during quantization
    :param dataloader: DataLoader used during quantization
    :param logdir: Log directory used for storing log files
    :return: None
    """
    # Rounding mode can be 'nearest' or 'stochastic'
    rounding_mode = 'nearest'

    # Number of samples used during quantization
    num_quant_samples = 16

    # Number of samples used for bias correction
    num_bias_correct_samples = 16

    params = QuantParams(weight_bw=8, act_bw=8, round_mode=rounding_mode, quant_scheme='tf_enhanced')

    # Perform Bias Correction
    bias_correction.correct_bias(model.to(device='cpu'), params, num_quant_samples=num_quant_samples,
                                 data_loader=data_loader, num_bias_correct_samples=num_bias_correct_samples)from aimet_torch import bias_correction
from aimet_torch.quantsim import QuantParams

def apply_bias_correction(model: torch.nn.Module, data_loader: DataLoader):
    """
    Applies Bias-Correction on the model.
    :param model: The model to quantize
    :param evaluator: Evaluator used during quantization
    :param dataloader: DataLoader used during quantization
    :param logdir: Log directory used for storing log files
    :return: None
    """
    # Rounding mode can be 'nearest' or 'stochastic'
    rounding_mode = 'nearest'

    # Number of samples used during quantization
    num_quant_samples = 16

    # Number of samples used for bias correction
    num_bias_correct_samples = 16

    params = QuantParams(weight_bw=8, act_bw=8, round_mode=rounding_mode, quant_scheme='tf_enhanced')

    # Perform Bias Correction
    bias_correction.correct_bias(model.to(device='cpu'), params, num_quant_samples=num_quant_samples,
                                 data_loader=data_loader, num_bias_correct_samples=num_bias_correct_samples)

input_shape = (1, 40, 101)

model = model.eval()

# Performs BatchNorm fold, Cross layer scaling and High bias folding
equalize_model(model, input_shape)

# Model has nn.Conv1d layers in it, train_data_loader returns data of shape (batch size, 40, 101)
apply_bias_correction(model=model, data_loader=train_data_loader)

Remaining issue

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
[/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb](https://vscode-remote+ssh-002dremote-002bquechua1-002eewi-002etudelft-002enl.vscode-resource.vscode-cdn.net/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb) Cell 28 in ()
----> [1](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0) apply_bias_correction(model=model, data_loader=train_data_loader)

[/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb](https://vscode-remote+ssh-002dremote-002bquechua1-002eewi-002etudelft-002enl.vscode-resource.vscode-cdn.net/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb) Cell 28 in apply_bias_correction(model, data_loader)
     [22](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=21) params = QuantParams(weight_bw=8, act_bw=8, round_mode=rounding_mode, quant_scheme='tf_enhanced')
     [24](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=23) # Perform Bias Correction
---> [25](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=24) bias_correction.correct_bias(model.to(device='cpu'), params, num_quant_samples=num_quant_samples,
     [26](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=25)                              data_loader=data_loader, num_bias_correct_samples=num_bias_correct_samples)

File [~/anaconda3/envs/meta-learning-arena3.8/lib/python3.8/site-packages/aimet_torch/bias_correction.py:342](https://vscode-remote+ssh-002dremote-002bquechua1-002eewi-002etudelft-002enl.vscode-resource.vscode-cdn.net/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/~/anaconda3/envs/meta-learning-arena3.8/lib/python3.8/site-packages/aimet_torch/bias_correction.py:342), in correct_bias(model, quant_params, num_quant_samples, data_loader, num_bias_correct_samples, conv_bn_dict, perform_only_empirical_bias_corr, layers_to_ignore)
    339         reference_output_batch = reference_output_batch.reshape(extended_shape)
    340         quantized_model_output_batch = quantized_model_output_batch.reshape(extended_shape)
--> 342     bias_correction.storePreActivationOutput(reference_output_batch)
    343     bias_correction.storeQuantizedPreActivationOutput(quantized_model_output_batch)
    345 call_empirical_mo_correct_bias(module, bias_correction)

ValueError: array has incorrect number of dimensions: 3; expected 4---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
[/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb](https://vscode-remote+ssh-002dremote-002bquechua1-002eewi-002etudelft-002enl.vscode-resource.vscode-cdn.net/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb) Cell 28 in ()
----> [1](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0) apply_bias_correction(model=model, data_loader=train_data_loader)

[/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb](https://vscode-remote+ssh-002dremote-002bquechua1-002eewi-002etudelft-002enl.vscode-resource.vscode-cdn.net/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb) Cell 28 in apply_bias_correction(model, data_loader)
     [22](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=21) params = QuantParams(weight_bw=8, act_bw=8, round_mode=rounding_mode, quant_scheme='tf_enhanced')
     [24](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=23) # Perform Bias Correction
---> [25](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=24) bias_correction.correct_bias(model.to(device='cpu'), params, num_quant_samples=num_quant_samples,
     [26](vscode-notebook-cell://ssh-remote%2Bquechua1.ewi.tudelft.nl/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/quant_tcn_kws_aimet.ipynb#Y125sdnNjb2RlLXJlbW90ZQ%3D%3D?line=25)                              data_loader=data_loader, num_bias_correct_samples=num_bias_correct_samples)

File [~/anaconda3/envs/meta-learning-arena3.8/lib/python3.8/site-packages/aimet_torch/bias_correction.py:342](https://vscode-remote+ssh-002dremote-002bquechua1-002eewi-002etudelft-002enl.vscode-resource.vscode-cdn.net/space/ddenblanken/Projects/meta-learning-arena/src/metalarena/experiments/~/anaconda3/envs/meta-learning-arena3.8/lib/python3.8/site-packages/aimet_torch/bias_correction.py:342), in correct_bias(model, quant_params, num_quant_samples, data_loader, num_bias_correct_samples, conv_bn_dict, perform_only_empirical_bias_corr, layers_to_ignore)
    339         reference_output_batch = reference_output_batch.reshape(extended_shape)
    340         quantized_model_output_batch = quantized_model_output_batch.reshape(extended_shape)
--> 342     bias_correction.storePreActivationOutput(reference_output_batch)
    343     bias_correction.storeQuantizedPreActivationOutput(quantized_model_output_batch)
    345 call_empirical_mo_correct_bias(module, bias_correction)

ValueError: array has incorrect number of dimensions: 3; expected 4

@quic-akhobare
Copy link
Contributor

Hi @V0XNIHILI .. So specifically this code needs to be updated
image

@quic-akhobare
Copy link
Contributor

Let me walk through the changes likely needed

  • the weight tensors being sent as arguments to the correctBias call on line 208, need to be 4D tensors.
  • So in the case of Conv1D, the weight tensors will be 3D, so we need something like np.expand_dims(x, 3)
  • Code block at line 181 needs to be updated for ConvTranspose1D

Could you try going a bit further? If you get stuck someone else can pitch in..

@quic-akhobare
Copy link
Contributor

Just restarting the job - since it failed due to a known error. So we can see the changes so far are partial but don't break existing support.

@quic-mangal
Copy link
Contributor

@quic-bharathr
Copy link
Contributor

Hi @V0XNIHILI , could you please rebase your branch with the latest "develop" branch?
https://github.com/quic/aimet/tree/develop
That should likely fix the status checks failures. Let me know if you need any help.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants