Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Address Leiden numbering issue #4845

Merged

Conversation

jnke2016
Copy link
Contributor

@jnke2016 jnke2016 commented Jan 3, 2025

Our current implementation of Leiden can return non contiguous cluster IDs however, there is an unused utility function relabel_cluster_ids that serves the purpose of relabeling.

This PR

  • Addresses the Leiden numbering issue from 4791 by calling relabel_cluster_ids after flattening the dendrogram.
  • Fixes a bug in the MG python API of Leiden which requires a different seed for each GPU in the C++ API
  • Add SG and MG C++ tests
  • Add a python SG and MG test capturing the numbering issue

closes #4791

@@ -713,6 +713,57 @@ std::pair<size_t, weight_t> leiden(

detail::flatten_leiden_dendrogram(handle, graph_view, *dendrogram, clustering);

// Get unique cluster id
size_t local_num_verts = (*dendrogram).get_level_size_nocheck(0);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

dendrogram->get_level_size_nocheck(0);

Comment on lines 718 to 766
rmm::device_uvector<vertex_t> unique_cluster_ids(local_num_verts, handle.get_stream());

thrust::copy(handle.get_thrust_policy(),
clustering,
clustering + local_num_verts,
unique_cluster_ids.begin());

thrust::sort(handle.get_thrust_policy(), unique_cluster_ids.begin(), unique_cluster_ids.end());

unique_cluster_ids.resize(thrust::distance(unique_cluster_ids.begin(),
thrust::unique(handle.get_thrust_policy(),
unique_cluster_ids.begin(),
unique_cluster_ids.end())),
handle.get_stream());

if constexpr (multi_gpu) {
auto recvcounts = cugraph::host_scalar_allgather(
handle.get_comms(), unique_cluster_ids.size(), handle.get_stream());

std::vector<size_t> displacements(recvcounts.size());
std::exclusive_scan(recvcounts.begin(), recvcounts.end(), displacements.begin(), size_t{0});
rmm::device_uvector<vertex_t> allgathered_unique_cluster_ids(
displacements.back() + recvcounts.back(), handle.get_stream());
cugraph::device_allgatherv(handle.get_comms(),
unique_cluster_ids.begin(),
allgathered_unique_cluster_ids.begin(),
recvcounts,
displacements,
handle.get_stream());

thrust::sort(handle.get_thrust_policy(),
allgathered_unique_cluster_ids.begin(),
allgathered_unique_cluster_ids.end());

allgathered_unique_cluster_ids.resize(
thrust::distance(allgathered_unique_cluster_ids.begin(),
thrust::unique(handle.get_thrust_policy(),
allgathered_unique_cluster_ids.begin(),
allgathered_unique_cluster_ids.end())),
handle.get_stream());

detail::relabel_cluster_ids<vertex_t, multi_gpu>(
handle, allgathered_unique_cluster_ids, clustering, local_num_verts);

} else {
detail::relabel_cluster_ids<vertex_t, multi_gpu>(
handle, unique_cluster_ids, clustering, local_num_verts);
}

Copy link
Contributor

@naimnv naimnv Jan 6, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM, but please test it rigorously.
Currently we don't have a test to check if the produced cluster ids are consecutive, starting from 0.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

std::exclusive_scan(recvcounts.begin(), recvcounts.end(), displacements.begin(), size_t{0});
rmm::device_uvector<vertex_t> allgathered_unique_cluster_ids(
displacements.back() + recvcounts.back(), handle.get_stream());
cugraph::device_allgatherv(handle.get_comms(),
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

By doing an allgatherv we are assuming that the entire list of cluster ids will fit in the available GPU memory of all GPUs. It's not clear to me... if we have a large graph on thousands of GPUs that doesn't cluster well that this is a safe assumption.

It's probably safer (for scalability purposes) to shuffle things to different GPUs and each generate their own unique subset. So I'd suggest:

  • Use the remove_duplicates defined earlier in this file which already does the sort/unique on a list and handles SG or MG
  • I think this result can be passed into relabel_cluster_ids directly which would greatly simplify this code.

cluster_ids_size_per_rank.end(),
cluster_ids_starts.begin(),
size_t{0});
auto& comm = handle.get_comms();
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks good, functionally.

If you're going to pull out &comm from the handle, I'd do that at line 612 (right as you enter the if block and use comm also in the call to host_scalar_allgather. Otherwise I would just use handle.get_comms().get_rank() as the index in the next line.

But that's purely cosmetic.

@jnke2016 jnke2016 self-assigned this Jan 9, 2025
@jnke2016 jnke2016 added this to the 25.02 milestone Jan 9, 2025
@rlratzel rlratzel added bug Something isn't working non-breaking Non-breaking change labels Jan 10, 2025
Copy link
Contributor

@rlratzel rlratzel left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Python changes LGTM.

@rlratzel
Copy link
Contributor

/merge

@rapids-bot rapids-bot bot merged commit ed954dc into rapidsai:branch-25.02 Jan 11, 2025
76 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working cuGraph non-breaking Non-breaking change python
Projects
None yet
Development

Successfully merging this pull request may close these issues.

[BUG]: Leiden clustering numbering is off
4 participants