Skip to content

Commit

Permalink
Add random_state in Space definition
Browse files Browse the repository at this point in the history
  • Loading branch information
rodrigo-arenas committed Jun 5, 2022
1 parent 086eb59 commit 5b22cf9
Show file tree
Hide file tree
Showing 4 changed files with 24 additions and 11 deletions.
1 change: 0 additions & 1 deletion README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,6 @@ Example: Hyperparameters Tuning
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.datasets import load_digits
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
data = load_digits()
n_samples = len(data.images)
Expand Down
6 changes: 6 additions & 0 deletions docs/release_notes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,12 @@ Features:
* The `weighted_choice` function used in :class:`~sklearn_genetic.GAFeatureSelectionCV` was
re-written to give more probability to a number of features closer to the `max_features` parameter

* Add `random_state` parameter (default= ``None``) in :class:`~sklearn_genetic.space.Continuous`,
:class:`~sklearn_genetic.space.Categorical` and :class:`~sklearn_genetic.space.Integer` classes
to leave fixed the random seed during hyperparameters sampling.
Take into account that this only ensures that the space components are reproducible, not all the package.
This is due to the DEAP dependency, which doesn't seem to have a native way to set the random seed.

What's new in 0.8.1
-------------------

Expand Down
1 change: 0 additions & 1 deletion sklearn_genetic/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@
from deap.algorithms import varAnd, varOr

from .callbacks.validations import eval_callbacks
from .schedules.base import BaseAdapter


def eaSimple(
Expand Down
27 changes: 18 additions & 9 deletions sklearn_genetic/space/space.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ class Integer(BaseDimension):
"""class for hyperparameters search space of integer values"""

def __init__(
self, lower: int = None, upper: int = None, distribution: str = "uniform"
self, lower: int = None, upper: int = None, distribution: str = "uniform", random_state=None
):
"""
Parameters
Expand All @@ -26,7 +26,8 @@ def __init__(
distribution : str, default="uniform"
Distribution to sample initial population and mutation values, currently only supports 'uniform'.
random_state : int or None, RandomState instance, default=None
Pseudo random number generator state used for random dimension sampling.
"""

if not isinstance(lower, int):
Expand All @@ -46,21 +47,23 @@ def __init__(
self.lower = lower
self.upper = upper
self.distribution = distribution
self.random_state = random_state
self.rng = None if not self.random_state else np.random.default_rng(self.random_state)

if self.distribution == IntegerDistributions.uniform.value:
self.rvs = stats.randint.rvs

def sample(self):
"""Sample a random value from the assigned distribution"""

return self.rvs(self.lower, self.upper + 1)
return self.rvs(self.lower, self.upper + 1, random_state=self.rng)


class Continuous(BaseDimension):
"""class for hyperparameters search space of real values"""

def __init__(
self, lower: float = None, upper: float = None, distribution: str = "uniform"
self, lower: float = None, upper: float = None, distribution: str = "uniform", random_state=None
):
"""
Parameters
Expand All @@ -73,7 +76,8 @@ def __init__(
distribution : {'uniform', 'log-uniform'}, default='uniform'
Distribution to sample initial population and mutation values.
random_state : int or None, RandomState instance, default=None
Pseudo random number generator state used for random dimension sampling.
"""

if not isinstance(lower, (int, float)):
Expand All @@ -94,6 +98,8 @@ def __init__(
self.upper = upper
self.distribution = distribution
self.shifted_upper = self.upper
self.random_state = random_state
self.rng = None if not self.random_state else np.random.default_rng(self.random_state)

if self.distribution == ContinuousDistributions.uniform.value:
self.rvs = stats.uniform.rvs
Expand All @@ -104,14 +110,14 @@ def __init__(
def sample(self):
"""Sample a random value from the assigned distribution"""

return self.rvs(self.lower, self.shifted_upper)
return self.rvs(self.lower, self.shifted_upper, random_state=self.rng)


class Categorical(BaseDimension):
"""class for hyperparameters search space of categorical values"""

def __init__(
self, choices: list = None, priors: list = None, distribution: str = "choice"
self, choices: list = None, priors: list = None, distribution: str = "choice", random_state=None
):
"""
Parameters
Expand All @@ -124,7 +130,8 @@ def __init__(
distribution: str, default='choice'
Distribution to sample initial population and mutation values, currently only supports "choice".
random_state : int or None, RandomState instance, default=None
Pseudo random number generator state used for random dimension sampling.
"""

if not choices or not isinstance(choices, list):
Expand All @@ -148,9 +155,11 @@ def __init__(

self.choices = choices
self.distribution = distribution
self.random_state = random_state
self.rng = None if not self.random_state else np.random.default_rng(self.random_state)

if self.distribution == CategoricalDistributions.choice.value:
self.rvs = np.random.choice
self.rvs = self.rng.choice if self.rng else np.random.choice

def sample(self):
"""Sample a random value from the assigned distribution"""
Expand Down

0 comments on commit 5b22cf9

Please sign in to comment.