This model is an implementation of Classification Relatoins by Ranking with Convolutional Neural Network, paper link is https://arxiv.org/abs/1504.06580
Word Embedding link is: http://nlp.stanford.edu/data/glove.6B.zip
In the paper, the author used a 400d Embedding, while in this implementation I use a 300d Embedding. Other parameters keep the same.
precision recall f1-score support
Entity-Destination 0.85 0.90 0.88 292
Entity-Origin 0.83 0.78 0.81 258
Content-Container 0.81 0.84 0.82 192
Message-Topic 0.76 0.94 0.84 261
Product-Producer 0.73 0.74 0.74 231
Member-Collection 0.78 0.92 0.84 233
Cause-Effect 0.91 0.90 0.90 328
Instrument-Agency 0.71 0.73 0.72 156
Component-Whole 0.86 0.75 0.80 312
micro avg 0.81 0.84 0.83 2263
macro avg 0.80 0.83 0.82 2263
weighted avg 0.82 0.84 0.83 2263