Skip to content

runqitian/CR-CNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CRCNN Implementation

Introduction

This model is an implementation of Classification Relatoins by Ranking with Convolutional Neural Network, paper link is https://arxiv.org/abs/1504.06580
Word Embedding link is: http://nlp.stanford.edu/data/glove.6B.zip
In the paper, the author used a 400d Embedding, while in this implementation I use a 300d Embedding. Other parameters keep the same.

Performance

                    precision    recall  f1-score   support
                    
Entity-Destination       0.85      0.90      0.88       292
     Entity-Origin       0.83      0.78      0.81       258
 Content-Container       0.81      0.84      0.82       192
     Message-Topic       0.76      0.94      0.84       261
  Product-Producer       0.73      0.74      0.74       231
 Member-Collection       0.78      0.92      0.84       233
      Cause-Effect       0.91      0.90      0.90       328
 Instrument-Agency       0.71      0.73      0.72       156
   Component-Whole       0.86      0.75      0.80       312
   
         micro avg       0.81      0.84      0.83      2263
         macro avg       0.80      0.83      0.82      2263
      weighted avg       0.82      0.84      0.83      2263

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published