Skip to content

Commit

Permalink
update class_1
Browse files Browse the repository at this point in the history
  • Loading branch information
mahykari committed Oct 19, 2023
1 parent 0436acc commit 99de989
Showing 1 changed file with 142 additions and 1 deletion.
143 changes: 142 additions & 1 deletion class_1.tex
Original file line number Diff line number Diff line change
@@ -1 +1,142 @@
\chapter{Class 1}
\chapter{Class 1}

\newcommand{\Reals}{\mathbb{R}}

\section{Tools}
\begin{itemize}
\item Lean or Coq
\item CVC5 or Z3
\item possibly a model checker
\item professional version of ChatGPT
\end{itemize}

\section{Syllabus}
\begin{enumerate}
\item MATH (``Informalism'')
\begin{itemize}
\item proofs (natural deduction)
\item fixpoints (induction, coinduction)
\end{itemize}
\item DECLARATIVE LOGIC
\begin{itemize}
\item syntax (rules) vs. semantics (models)
\item propositional, predicate, modal logic
\item decision procedures (SAT, SMT)
\end{itemize}
\item FUNCTIONS
\begin{itemize}
\item $\lambda$ calculus, typed $\lambda$
\item SOS (structured operational semantics), rewriting
\item ``propositions-as-types'' (connection to logic)
\end{itemize}
\item PROCESSES (CONCURRENT)*
\begin{itemize}
\item CCS, Petri nets
\item (bi-) simulation
\end{itemize}
\item CIRCUITS*
\begin{itemize}
\item boolean, sequential, dataflow (Kahn nets)
\item interfaces
\end{itemize}
\item STATE TRANSITION SYSTEMS*
\begin{itemize}
\item ($\omega$-) automata, games, timed, probabilistic, pushdown
\item programs, Turing machines
\item grammars (Chomsky hierarchy)
\end{itemize}
\item DECLARATIVE SPECIFICATION
\begin{itemize}
\item Hoare logics, separation logic
\item temporal logics (LTL, CTL, ATL)
\item partial correctness vs. termination, safety vs. liveness
\end{itemize}
\end{enumerate}

*: Operational.

\section{Math}
\begin{definition}
A real $b$ is a \underline{bound} of a
function $f$ from $\Reals$ to $\Reals$ if for all $x$ in
$\Reals$, we have $f(x) \leq b$.
\end{definition}

\begin{definition}
Given two functions $f$ and $g$ from $\Reals$ to
$\Reals$, their \underline{sum} is the function $f + g$ such
that for all $x$ in $\Reals$, we have $(f+g) (x) = f(x) + g(x)$.
\end{definition}

\begin{theorem}
For all functions $f$ and $g$ from $\Reals$ to $\Reals$, if $f$ and
$g$ are bounded, then $f+g$ is bounded.
\end{theorem}
\begin{proof}
\begin{enumerate}
\item Consider arbitrary functions $\hat{f}$ and $\hat{g}$ from
$\Reals$ to $\Reals$.
\item Assume $\hat{f}$ and $\hat{g}$ are bounded.
\item Show that $\hat{f} + \hat{g}$ is bounded.
\item (2 $\rightarrow$) Let $\hat{a}$ be a bound for $\hat{f}$,
and $\hat{b}$ be a bound for $\hat{g}$.
\item We show that $\hat{a} + \hat{b}$ is a bound for
$\hat{f} + \hat{g}$.
\item Consider an arbitrary real $\hat{x}$.
\item Show $(\hat{f}+\hat{g})(x) \leq \hat{a} + \hat{b}$.
\item (Definition of sum) $(\hat{f}+\hat{g})(\hat{x})
= \hat{f}(\hat{x}) + \hat{g}(\hat{x})$.
\item (Definition of bound) $\hat{f}(\hat{x}) \leq \hat{a}$ and
$\hat{g}(\hat{x}) \leq \hat{b}$.
\item The rest follows from ``arithmetic''.
\end{enumerate}
\end{proof}

\noindent \textbf{Homework.} Prove the Schr\"{o}der-Bernstein theorem
``in this style''.

\begin{definition}
Two sets $A$ and $B$ are \underline{equipollent} (``have the same
size'') if there is a bijection from $A$ to $B$.
\end{definition}

\begin{definition}
A function $f$ from $A$ to $B$ is
\begin{enumerate}
\item \underline{one-to-one} if for all $x$ and $y$ in $A$, if
$x \neq y$, then $f(x) \neq f(y)$.
\item \underline{onto} if for all $z$ in $B$, there exists $x$
in $A$ such that $f(x) = z$.
\item \underline{bijective} if $f$ is one-to-one and onto.
\end{enumerate}
\end{definition}

\begin{center}
\begin{tabular}{
p{0.35\linewidth} | p{0.35\linewidth} | p{0.2\linewidth}}
Goals & Knowledge & Outermost symbol \\
\hline
\begin{itemize}[leftmargin=*]
\item[] Show for all $x$, $G(x)$.
\item[] Consider arbitrary $\hat{x}$.
\item[] Show $G(\hat{x})$.
\end{itemize} & \begin{itemize}[leftmargin=*]
\item[] We know for all $x$, $K(x)$.
\item[] In particular, we know $K(\hat{t})$.
\item[] $\hat{t}$: term containing only constants.
\end{itemize} & \begin{itemize}
\item[] \Large $\forall$
\end{itemize} \\
\hline
\begin{itemize}[leftmargin=*]
\item[] Show there exists $x$ s.t. $G(x)$.
\item[] We show that $G(\hat{t})$.
\item[] $\hat{t}$: term containing only constants.
\end{itemize} & \begin{itemize}[leftmargin=*]
\item[] We know there exists $x$ s.t. $K(x)$.
\item[] Let $\hat{x}$ be s.t. $K(\hat{x})$.
\end{itemize} & \begin{itemize}
\item[] \Large $\exists$
\end{itemize}
\end{tabular}
\end{center}

0 comments on commit 99de989

Please sign in to comment.