Skip to content

Commit

Permalink
lib/monads/trace: add connection to reader_option
Browse files Browse the repository at this point in the history
This duplicates nondet/Nondet_Reader_Option.thy but for the trace monad
instead. It proves various lemmas connecting reader_option concepts with
trace concepts.

Signed-off-by: Corey Lewis <[email protected]>
  • Loading branch information
corlewis committed Mar 1, 2024
1 parent 82292aa commit 11492f2
Show file tree
Hide file tree
Showing 3 changed files with 222 additions and 2 deletions.
1 change: 1 addition & 0 deletions lib/Monads/ROOT
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ session Monads (lib) = HOL +
Trace_In_Monad
Trace_More_VCG
Trace_No_Fail
Trace_Reader_Option
Trace_Sat
Strengthen
Nondet_Strengthen_Setup
Expand Down
4 changes: 2 additions & 2 deletions lib/Monads/trace/Trace_Monad.thy
Original file line number Diff line number Diff line change
Expand Up @@ -694,8 +694,8 @@ inductive_set whileLoop_results ::
"\<lbrakk> \<not> C r s \<rbrakk> \<Longrightarrow> ((r, s), ([], Result (r, s))) \<in> whileLoop_results C B"
| "\<lbrakk> C r s; (ts, Failed) \<in> B r s \<rbrakk> \<Longrightarrow> ((r, s), (ts, Failed)) \<in> whileLoop_results C B"
| "\<lbrakk> C r s; (ts, Incomplete) \<in> B r s \<rbrakk> \<Longrightarrow> ((r, s), (ts, Incomplete)) \<in> whileLoop_results C B"
| "\<lbrakk> C r s; (ts, Result (r', s')) \<in> B r s; ((r', s'), (ts',z)) \<in> whileLoop_results C B \<rbrakk>
\<Longrightarrow> ((r, s), (ts'@ts,z)) \<in> whileLoop_results C B"
| "\<lbrakk> C r s; (ts, Result (r', s')) \<in> B r s; ((r', s'), (ts',z)) \<in> whileLoop_results C B; ts''=ts'@ts \<rbrakk>
\<Longrightarrow> ((r, s), (ts'',z)) \<in> whileLoop_results C B"

\<comment> \<open>FIXME: there are fewer lemmas here than in NonDetMonad and I don't understand this well enough
to know whether this is correct or not.\<close>
Expand Down
219 changes: 219 additions & 0 deletions lib/Monads/trace/Trace_Reader_Option.thy
Original file line number Diff line number Diff line change
@@ -0,0 +1,219 @@
(*
* Copyright 2024, Proofcraft Pty Ltd
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)

(* Reader option monad syntax plus the connection between the reader option monad and the trace monad *)

theory Trace_Reader_Option
imports
Trace_No_Fail
Reader_Option_VCG
begin

(* FIXME: remove this syntax, standardise on do {..} instead *)
(* Syntax defined here so we can reuse Trace_Monad definitions *)
syntax
"_doO" :: "[dobinds, 'a] => 'a" ("(DO (_);// (_)//OD)" 100)

translations
"_doO (_dobinds b bs) e" == "_doO b (_doO bs e)"
"_doO (_nobind b) e" == "b |>> (CONST K_bind e)"
"DO x <- a; e OD" == "a |>> (\<lambda>x. e)"


lemma ovalid_K_bind_wp[wp]:
"ovalid P f Q \<Longrightarrow> ovalid P (K_bind f x) Q"
by simp

lemma ovalidNF_K_bind_wp[wp]:
"ovalidNF P f Q \<Longrightarrow> ovalidNF P (K_bind f x) Q"
by simp

lemma no_ofail_K_bind[wp]:
"no_ofail P f \<Longrightarrow> no_ofail P (K_bind f x)"
by simp

lemma no_ofail_gets_the_eq:
"no_ofail P f \<longleftrightarrow> no_fail P (gets_the (f :: ('s, 'a) lookup))"
by (auto simp: no_ofail_def no_fail_def gets_the_def gets_def
get_def assert_opt_def bind_def return_def fail_def
split: option.split)

lemmas no_ofail_gets_the =
no_ofail_gets_the_eq[THEN iffD1]


(* Lemmas relating ovalid and valid *)
lemma ovalid_gets_the:
"ovalid P f Q \<Longrightarrow> \<lbrace>P\<rbrace> gets_the f \<lbrace>Q\<rbrace>"
apply wpsimp
apply (fastforce dest: use_ovalid)
done


lemmas monad_simps =
gets_the_def bind_def assert_def assert_opt_def
simpler_gets_def fail_def return_def

lemma gets_the_opt_map:
"gets_the (f |> g) = do x \<leftarrow> gets_the f; assert_opt (g x) od"
by (rule ext) (simp add: monad_simps opt_map_def split: option.splits)

lemma gets_the_opt_o:
"gets_the (f |> Some o g) = do x \<leftarrow> gets_the f; return (g x) od"
by (simp add: gets_the_opt_map assert_opt_Some)

lemma gets_the_obind:
"gets_the (f |>> g) = gets_the f >>= (\<lambda>x. gets_the (g x))"
by (rule ext) (simp add: monad_simps obind_def split: option.splits)

lemma gets_the_return:
"gets_the (oreturn x) = return x"
by (simp add: monad_simps oreturn_def)

lemma gets_the_fail:
"gets_the ofail = fail"
by (simp add: monad_simps ofail_def)

lemma gets_the_ogets:
"gets_the (ogets s) = gets s"
by (clarsimp simp: monad_simps ogets_def)

lemma gets_the_returnOk:
"gets_the (oreturnOk x) = returnOk x"
by (simp add: monad_simps oreturnOk_def returnOk_def)

lemma gets_the_throwError:
"gets_the (othrow e) = throwError e"
by (simp add: monad_simps othrow_def throwError_def)

lemma gets_the_assert:
"gets_the (oassert P) = assert P"
by (simp add: oassert_def assert_def gets_the_fail gets_the_return)

lemma gets_the_assert_opt:
"gets_the (oassert_opt P) = assert_opt P"
by (simp add: oassert_opt_def assert_opt_def gets_the_return gets_the_fail split: option.splits)

lemma gets_the_if_distrib:
"gets_the (if P then f else g) = (if P then gets_the f else gets_the g)"
by simp

lemma gets_the_oapply_comp:
"gets_the (oapply x \<circ> f) = gets_map f x"
by (fastforce simp: gets_map_def gets_the_def o_def gets_def)

lemma gets_the_Some:
"gets_the (\<lambda>_. Some x) = return x"
by (simp add: gets_the_def assert_opt_Some)

lemma gets_the_oapply2_comp:
"gets_the (oapply2 y x \<circ> f) = gets_map (swp f y) x"
by (clarsimp simp: gets_map_def gets_the_def o_def gets_def)

lemma gets_obind_bind_eq:
"(gets (f |>> (\<lambda>x. g x))) =
(gets f >>= (\<lambda>x. case x of None \<Rightarrow> return None | Some y \<Rightarrow> gets (g y)))"
by (auto simp: simpler_gets_def bind_def obind_def return_def split: option.splits)

lemma mres_assert_opt:
"mres (assert_opt opt s) = (if opt = None then {} else {(the opt,s)})"
by (clarsimp simp: assert_opt_def fail_def return_def mres_def vimage_def split: option.split)


lemmas omonad_simps [simp] =
gets_the_opt_map assert_opt_Some gets_the_obind
gets_the_return gets_the_fail gets_the_returnOk
gets_the_throwError gets_the_assert gets_the_Some
gets_the_oapply_comp


section "Relation between option monad loops and trace monad loops."

(* Option monad whileLoop formalisation thanks to Lars Noschinski <[email protected]>. *)

lemma gets_the_conv:
"(gets_the B s) = (case B s of Some r' \<Rightarrow> ({([], Result (r', s))}) | _ \<Rightarrow> {([], Failed)})"
by (auto simp: gets_the_def gets_def get_def bind_def return_def fail_def assert_opt_def split: option.splits)

lemma gets_the_loop_terminates:
"whileLoop_terminates C (\<lambda>a. gets_the (B a)) r s
\<longleftrightarrow> (\<exists>rs'. (Some r, rs') \<in> option_while' (\<lambda>a. C a s) (\<lambda>a. B a s))" (is "?L \<longleftrightarrow> ?R")
proof
assume ?L then show ?R
proof (induct rule: whileLoop_terminates.induct[case_names 1 2])
case (2 r s) then show ?case
by (cases "B r s") (auto simp: gets_the_conv intro: option_while'.intros)
qed (auto intro: option_while'.intros)
next
assume ?R then show ?L
proof (elim exE)
fix rs' assume "(Some r, rs') \<in> option_while' (\<lambda>a. C a s) (\<lambda>a. B a s)"
then have "whileLoop_terminates C (\<lambda>a. gets_the (B a)) (the (Some r)) s"
by induct (auto intro: whileLoop_terminates.intros simp: gets_the_conv)
then show ?thesis by simp
qed
qed

lemma The_eqD:
"\<lbrakk>The P = x; \<exists>!x. P x\<rbrakk> \<Longrightarrow> P x"
by (metis theI)

lemma gets_the_whileLoop:
fixes C :: "'a \<Rightarrow> 's \<Rightarrow> bool"
assumes terminates: "\<forall>s. whileLoop_terminates C (\<lambda>a. gets_the (B a)) r s"
shows "whileLoop C (\<lambda>a. gets_the (B a)) r = gets_the (owhile C B r)"
proof -
{ fix r s r' s' ts assume "((r,s), ts, Result (r', s')) \<in> whileLoop_results C (\<lambda>a. gets_the (B a))"
then have "s = s' \<and> ts = [] \<and>(Some r, Some r') \<in> option_while' (\<lambda>a. C a s) (\<lambda>a. B a s)"
by (induct r s ts "Result (r', s')")
(auto intro: option_while'.intros simp: gets_the_conv split: option.splits) }
note wl'_Result = this

{ fix r s ts assume "((r,s), ts, Failed) \<in> whileLoop_results C (\<lambda>a. gets_the (B a))"
then have "ts = [] \<and> (Some r, None) \<in> option_while' (\<lambda>a. C a s) (\<lambda>a. B a s)"
by (induct r s ts "Failed :: (('s, 'a) tmres)")
(auto intro: option_while'.intros simp: gets_the_conv split: option.splits) }
note wl'_Failed = this

{ fix r s ts assume "((r,s), ts, Incomplete) \<in> whileLoop_results C (\<lambda>a. gets_the (B a))"
then have "False"
by (induct r s ts "Incomplete :: (('s, 'a) tmres)")
(auto intro: option_while'.intros simp: gets_the_conv split: option.splits) }
note wl'_Incomplete = this

{ fix r s r' assume "(Some r, Some r') \<in> option_while' (\<lambda>a. C a s) (\<lambda>a. B a s)"
then have "((r,s), [], Result (r',s)) \<in> whileLoop_results C (\<lambda>a. gets_the (B a))"
by (induct "Some r" "Some r'" arbitrary: r)
(auto intro: whileLoop_results.intros simp: gets_the_conv) }
note option_while'_Some = this

{ fix r s assume "(Some r, None) \<in> option_while' (\<lambda>a. C a s) (\<lambda>a. B a s)"
then have "((r,s), [], Failed) \<in> whileLoop_results C (\<lambda>a. gets_the (B a))"
by (induct "Some r" "None :: 'a option" arbitrary: r)
(auto intro: whileLoop_results.intros simp: gets_the_conv) }
note option_while'_None = this

have "\<And>s. owhile C B r s = None
\<Longrightarrow> whileLoop C (\<lambda>a. gets_the (B a)) r s = {([], Failed)}"
using terminates
by (intro subset_antisym;
clarsimp simp: whileLoop_def owhile_def option_while_def gets_the_loop_terminates
split: if_split_asm intro!: option_while'_None dest!: The_eqD)
(case_tac b, auto dest!: wl'_Result wl'_Failed wl'_Incomplete option_while'_inj option_while'_THE)
moreover
have "\<And>s r'. owhile C B r s = Some r'
\<Longrightarrow> whileLoop C (\<lambda>a. gets_the (B a)) r s = {([], Result (r', s))}"
by (intro subset_antisym;
clarsimp simp: whileLoop_def owhile_def option_while_def option_while'_THE
split: if_split_asm intro!: option_while'_Some)
(case_tac b, auto dest: wl'_Result wl'_Failed wl'_Incomplete option_while'_inj)
ultimately
show ?thesis
by (auto simp: fun_eq_iff gets_the_conv split: option.split)
qed

end

0 comments on commit 11492f2

Please sign in to comment.