Skip to content

shionhonda/IaGo

Repository files navigation

What is IaGo?

IaGo is an Othello AI using SL(supervised learning) policy network, value network, and MCTS(Monte Carlo tree search) inspired by AlphaGo.
Short description in English:
IaGo: an Othello AI inspired by AlphaGo
Description in Japanese:
AlphaGoを模したオセロAIを作る(1): SLポリシーネットワーク - Qiita
AlphaGoを模したオセロAIを作る(2): RLポリシーネットワーク - Qiita
AlphaGoを模したオセロAIを作る(3): バリューネットワーク - Qiita
AlphaGoを模したオセロAIを作る(4): モンテカルロ木探索 - Qiita

How to play?

  1. Install chainer
    $ pip install chainer

  2. Download this repository
    $ git clone [email protected]:shionhonda/IaGo.git

  3. Move to IaGo directory and execute game.py
    $ python game.py
    You can set following options:
    --auto=False or --a=False
    If this is set True, autoplay begins between SLPolicy and PV-MCTS, and if False (default), the game is played by you and PV-MCTS.
    The thinking time is 10 seconds.

  4. When placing a stone, input two numbers separated by comma. For example:
    4,3
    The first number corresponds to the vertical position and the second to the horizontal (one origin).

How to train?

  1. Download data from http://meipuru-344.hatenablog.com/entry/2017/11/27/205448
  2. Save it as "IaGo/data/data.txt"
  3. Augment data
    $ python load.py
    You need at least 32MB RAM to complete this step.
  4. Execute train_policy.py to train SL policy network.
    $ python train_policy.py --policy=sl --epoch=10 --gpu=0
    You need GPUs to complete this step. It will take about 12 hours.
  5. Execute train_policy.py to train rollout policy.
    $ python train_policy.py --policy=rollout --epoch=1 --gpu=0
    This is fast.
  6. Execute train_rl.py to reinforce SL policy network with REINFORCE (a kind of policy gradients).
    $ python train_rl.py --set=10000
  7. Execute train_value.py to train value network.
    $ python train_value.py --epoch=20 --gpu=0
  8. Training done!

Acknowledgements

Special thanks to:
@Rochestar-NRT for replication of AlphaGo (especially MCTS).
@lazmond3 for giving lots of feedbacks!