Skip to content

Commit

Permalink
Merge pull request #794 from mperrin/nrc_ta_enhancements
Browse files Browse the repository at this point in the history
NRC TA plot enhancements
  • Loading branch information
obi-wan76 authored Apr 3, 2024
2 parents c5ea52d + ff4904e commit 7a16b00
Show file tree
Hide file tree
Showing 3 changed files with 110 additions and 24 deletions.
27 changes: 24 additions & 3 deletions webbpsf/mast_wss.py
Original file line number Diff line number Diff line change
Expand Up @@ -589,7 +589,7 @@ def get_corrections(opdtable):


@functools.lru_cache
def get_visit_nrc_ta_image(visitid, verbose=True):
def get_visit_nrc_ta_image(visitid, verbose=True, kind='cal'):
"""Retrieve from MAST the NIRCam target acq image for a given visit.
This retrieves an image from MAST and returns it as a HDUList variable
Expand All @@ -599,7 +599,6 @@ def get_visit_nrc_ta_image(visitid, verbose=True):
from astroquery.mast import Mast
keywords = {
'visit_id': [visitid[1:]], # note: drop the initial character 'V'
'category': ['CAL'],
'exp_type': ['NRC_TACQ']
}

Expand All @@ -616,10 +615,32 @@ def set_params(parameters):
t = Mast.service_request(service, params)
filename = t[0]['filename']

# If user manually specifies rate or uncal, retrieve that instead
if kind == 'rate' or kind == 'uncal':
filename = filename.replace('_cal.fits', f'_{kind}.fits')

if verbose:
print(f"TA filename: {filename}")
mast_file_url = f"https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:JWST/product/{filename}"
ta_hdul = fits.open(mast_file_url)
import urllib

try:
ta_hdul = fits.open(mast_file_url)
except urllib.error.HTTPError as err:
if err.code == 401: # Unauthorized
# Use MAST API to allow retrieval of exclusive access data, if relevant
import astroquery
import tempfile
mast_api_token = os.environ.get('MAST_API_TOKEN', None)
mast_obs = astroquery.mast.ObservationsClass(mast_api_token)
uri = f"mast:JWST/product/{filename}"
with tempfile.NamedTemporaryFile() as temp:
mast_obs.download_file(uri, local_path=temp.name, cache=False)
ta_hdul = astropy.io.fits.open(temp.name)
else:
raise # re-raise any errors other than 401 for permissions denied



return ta_hdul

Expand Down
14 changes: 8 additions & 6 deletions webbpsf/match_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,19 +54,21 @@ def setup_sim_to_match_file(filename_or_HDUList, verbose=True, plot=False, choic
if inst.name == 'NIRCam':
if header['PUPIL'].startswith('MASK'):
if header['PUPIL'] == 'MASKBAR':
inst.pupil_mask = header['CORONMSK'].replace('MASKA', 'MASK')
# the FITS header is just 'BAR' but the value needed in webbpsf is either
# 'MASKLWB' or "MASKSWB' depending on channel.
inst.pupil_mask = 'MASKLWB' if header['CHANNEL']=='LONG' else 'MASKSWB'
else:
inst.pupil_mask = header['PUPIL']
inst.image_mask = header['CORONMSK'].replace('MASKA', 'MASK') # note, have to modify the value slightly for
# consistency with the labels used in webbpsf
if 'CORONMSK' in header:
inst.image_mask = header['CORONMSK'].replace('MASKA', 'MASK') # note, have to modify the value slightly for
# consistency with the labels used in webbpsf
# The apername keyword is not always correct for cases with dual-channel coronagraphy
# in some such cases, APERNAME != PPS_APER. Let's ensure we have the proper apername for this channel:
apername = get_nrc_coron_apname(header)
inst.set_position_from_aperture_name(apername)

elif header['PUPIL'].startswith('F'):
inst.filter = header['PUPIL']
else:
elif header['PUPIL'] != 'CLEAR' and not header['PUPIL'].startswith('F'): # no action needed for these
# note that filters in the pupil wheel were handled already above
inst.pupil_mask = header['PUPIL']

elif inst.name == 'MIRI':
Expand Down
93 changes: 78 additions & 15 deletions webbpsf/trending.py
Original file line number Diff line number Diff line change
Expand Up @@ -1827,8 +1827,8 @@ def delta_wfe_around_time(datetime, plot=True, ax=None, vmax=0.05, return_filena


#### Functions for image comparisons
def show_wfs_ta_img(visitid, ax=None, return_handles=False):
""" Retrieve and display a WFS target acq image"""
def show_nrc_ta_img(visitid, ax=None, return_handles=False):
""" Retrieve and display a NIRCam target acq image"""

hdul = webbpsf.mast_wss.get_visit_nrc_ta_image(visitid)

Expand All @@ -1841,24 +1841,22 @@ def show_wfs_ta_img(visitid, ax=None, return_handles=False):
cmap = matplotlib.cm.viridis.copy()
cmap.set_bad('orange')


norm = matplotlib.colors.AsinhNorm(linear_width = vmax*0.003, vmax=vmax, #vmin=0)
vmin=-1*rsig)


if ax is None:
ax = plt.gca()
ax.imshow(ta_img - bglevel, norm=norm, cmap=cmap, origin='lower')
ax.set_title(f"WFS TA on {visitid}\n{hdul[0].header['DATE-OBS']}")
ax.set_title(f"NIRCam TA on {visitid}\n{hdul[0].header['DATE-OBS']}")
ax.set_ylabel("[Pixels]")
ax.text(0.05, 0.9, hdul[0].header['TARGPROP'],
color='white', transform=ax.transAxes)


if return_handles:
return hdul, ax, norm, cmap, bglevel

def nrc_ta_image_comparison(visitid):

def nrc_ta_image_comparison(visitid, verbose=False, show_centroids=False):
""" Retrieve a NIRCam target acq image and compare to a simulation
Parameters:
Expand All @@ -1872,30 +1870,95 @@ def nrc_ta_image_comparison(visitid):
fig, axes = plt.subplots(figsize=(10,5), ncols=3)

# Get and plot the observed TA image
hdul, ax, norm, cmap, bglevel = show_wfs_ta_img(visitid, ax=axes[0], return_handles=True)
im_obs = hdul['SCI'].data
hdul, ax, norm, cmap, bglevel = show_nrc_ta_img(visitid, ax=axes[0], return_handles=True)
im_obs = hdul['SCI'].data.copy()
im_obs_err = hdul['ERR'].data
im_obs_dq = hdul['DQ'].data

im_obs_clean = im_obs.copy()
im_obs_clean[im_obs_dq & 1] = np.nan # Mask out any DO_NOT_USE pixels.
im_obs_clean = astropy.convolution.interpolate_replace_nans(im_obs_clean, kernel=np.ones((5, 5)))

# Make a matching sim
nrc = webbpsf.setup_sim_to_match_file(hdul, verbose=False)
opdname = nrc.pupilopd[0].header['CORR_ID'] + "-NRCA3_FP1-1.fits"
psf = nrc.calc_psf(fov_pixels=64)
if verbose:
print(f"Calculating PSF to match that TA image...")
psf = nrc.calc_psf(fov_pixels=im_obs.shape[0])

# Align and Shift:

im_sim = psf['DET_DIST'].data # Use the extension including distortion and IPC

im_obs_clean = astropy.convolution.interpolate_replace_nans(im_obs, kernel=np.ones((5,5)))

shift, _, _ = phase_cross_correlation(im_obs_clean, im_sim, upsample_factor=32)
if verbose:
print(f"Shift to register sim to data: {shift} pix")
im_sim_shifted = scipy.ndimage.shift(im_sim, shift, order=5)

# figure out the background level and scale factor
scalefactor = np.nanmax(im_obs) / im_sim.max()
scalefactor = np.nanmax(im_obs_clean) / im_sim.max()
if verbose:
print(f"Scale factor to match sim to data: {scalefactor}")

im_sim_scaled_aligned = im_sim_shifted*scalefactor

# Plot
if show_centroids:
### OSS CENTROIDS ###
# First, see if we can retrieve the on-board TA centroid measurment from the OSS engineering DB in MAST
try:
import misc_jwst # Optional dependency, including engineering database access tools
# If we have that, retrieve the log for this visit, extract the OSS centroids, and convert to same
# coordinate frame as used here:
osslog = misc_jwst.engdb.get_ictm_event_log(hdul[0].header['VSTSTART'], hdul[0].header['VISITEND'])
try:
oss_cen = misc_jwst.engdb.extract_oss_TA_centroids(osslog, 'V' + hdul[0].header['VISIT_ID'])
# Convert from full-frame (as used by OSS) to detector subarray coords:
oss_cen_sci = nrc._detector_geom_info.aperture.det_to_sci(*oss_cen)
oss_cen_sci_pythonic = np.asarray(oss_cen_sci) - 1 # convert from 1-based pixel indexing to 0-based
oss_centroid_text = f"\n OSS centroid: {oss_cen_sci_pythonic[0]:.2f}, {oss_cen_sci_pythonic[1]:.2f}"
axes[0].scatter(oss_cen_sci_pythonic[0], oss_cen_sci_pythonic[1], color='0.5', marker='+', s=50)
axes[0].text(oss_cen_sci_pythonic[0], oss_cen_sci_pythonic[1], 'OSS ', color='0.9', verticalalignment='center', horizontalalignment='right')
if verbose:
print(f"OSS centroid on board: {oss_cen} (full det coord frame, 1-based)")
print(f"OSS centroid converted: {oss_cen_sci_pythonic} (sci frame in {nrc._detector_geom_info.aperture.AperName}, 0-based)")
full_ap = nrc.siaf[nrc._detector_geom_info.aperture.AperName[0:5] + "_FULL"]
oss_cen_full_sci = np.asarray(full_ap.det_to_sci(*oss_cen)) - 1
print(f"OSS centroid converted: {oss_cen_full_sci} (sci frame in {full_ap.AperName}, 0-based)")

except RuntimeError:
if verbose:
print("Could not parse TA coordinates from log. TA may have failed?")
oss_cen_sci_pythonic = None

### WCS COORDINATES ###
import jwst.datamodels
model = jwst.datamodels.open(hdul)
targ_coords = astropy.coordinates.SkyCoord(model.meta.target.ra, model.meta.target.dec, frame='icrs', unit=u.deg)
targ_coords_pix = model.meta.wcs.world_to_pixel(targ_coords) # returns x, y
axes[0].scatter(targ_coords_pix[0], targ_coords_pix[1], color='magenta', marker='+', s=50)
axes[0].text(targ_coords_pix[0], targ_coords_pix[1]+2, 'WCS', color='magenta', verticalalignment='bottom', horizontalalignment='center')
axes[0].text(0.95, 0.18, f'From WCS: {targ_coords_pix[0]:.2f}, {targ_coords_pix[1]:.2f}',
horizontalalignment='right', verticalalignment='bottom',
transform=axes[0].transAxes,
color='white')

if verbose:
print(f"Star coords from WCS: {targ_coords_pix}")
if oss_cen_sci_pythonic is not None:
print(f"WCS offset = {np.asarray(targ_coords_pix) - oss_cen_sci_pythonic} pix")

except ImportError:
oss_centroid_text = ""

### WEBBPSF CENTROIDS ###
cen = webbpsf.fwcentroid.fwcentroid(im_obs_clean)
axes[0].scatter(cen[1], cen[0], color='red', marker='+', s=50)
axes[0].text(cen[1], cen[0], ' webbpsf', color='red', verticalalignment='center')
axes[0].text(0.95, 0.05, f' webbpsf Centroid: {cen[1]:.2f}, {cen[0]:.2f}'+oss_centroid_text,
horizontalalignment='right', verticalalignment='bottom',
transform=axes[0].transAxes,
color='white')

axes[1].imshow(im_sim_scaled_aligned, norm=norm, cmap=cmap, origin='lower')
axes[1].set_title(f"Simulated PSF in F212N\nusing {opdname}")

Expand All @@ -1917,6 +1980,6 @@ def nrc_ta_image_comparison(visitid):
plt.tight_layout()


outname = f'wfs_ta_comparison_{visitid}.pdf'
outname = f'nrc_ta_comparison_{visitid}.pdf'
plt.savefig(outname)
print(f" => {outname}")

0 comments on commit 7a16b00

Please sign in to comment.