Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[P0] Fixing LoReFT rotation layer hot loading problem (#114) #123

Merged
merged 2 commits into from
Jul 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 15 additions & 5 deletions pyreft/interventions.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,9 @@ class LoreftIntervention(
"""
def __init__(self, **kwargs):
super().__init__(**kwargs, keep_last_dim=True)
rotate_layer = LowRankRotateLayer(self.embed_dim, kwargs["low_rank_dimension"], init_orth=True)
self.rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer, orthogonal_map='householder')
rotate_layer = LowRankRotateLayer(
self.embed_dim, kwargs["low_rank_dimension"], init_orth=True)
self.rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer)
self.learned_source = torch.nn.Linear(
self.embed_dim, kwargs["low_rank_dimension"]).to(
kwargs["dtype"] if "dtype" in kwargs else torch.bfloat16)
Expand Down Expand Up @@ -66,9 +67,18 @@ def load_state_dict(self, state_dict, *args, **kwargs):
Overwrite for data-efficiency.
"""
self.learned_source.load_state_dict(state_dict, strict=False)

# Caveat: without creating a new layer, it might not work (still not sure why)
# We have to recreate a layer, and load back the columns.
overload_w = state_dict["rotate_layer"]
overload_w_width = overload_w.shape[-1]
rotate_layer = LowRankRotateLayer(
self.embed_dim, overload_w_width, init_orth=True).to(
self.learned_source.weight.device)
self.rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer)
self.rotate_layer.parametrizations.weight[0].base[:,:overload_w_width] = overload_w
assert torch.allclose(self.rotate_layer.weight.data, overload_w.data) == True # we must match!

return


Expand Down Expand Up @@ -112,7 +122,7 @@ class ConsreftIntervention(
def __init__(self, **kwargs):
super().__init__(**kwargs, keep_last_dim=True)
rotate_layer = LowRankRotateLayer(self.embed_dim, kwargs["low_rank_dimension"], init_orth=True)
self.rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer, orthogonal_map='householder')
self.rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer)
self.learned_source = torch.nn.Parameter(
torch.rand(kwargs["low_rank_dimension"]), requires_grad=True)

Expand All @@ -137,7 +147,7 @@ class LobireftIntervention(
def __init__(self, **kwargs):
super().__init__(**kwargs, keep_last_dim=True)
rotate_layer = LowRankRotateLayer(self.embed_dim, kwargs["low_rank_dimension"], init_orth=True)
self.rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer, orthogonal_map='householder')
self.rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer)
self.learned_source = torch.nn.Parameter(
torch.rand(kwargs["low_rank_dimension"]), requires_grad=True)
self.dropout = torch.nn.Dropout(kwargs["dropout"] if "dropout" in kwargs else 0.0)
Expand All @@ -162,7 +172,7 @@ class DireftIntervention(
def __init__(self, **kwargs):
super().__init__(**kwargs, keep_last_dim=True)
rotate_layer = LowRankRotateLayer(self.embed_dim, kwargs["low_rank_dimension"], init_orth=True)
self.rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer, orthogonal_map='householder')
self.rotate_layer = torch.nn.utils.parametrizations.orthogonal(rotate_layer)
self.learned_source = torch.nn.Linear(
self.embed_dim, kwargs["low_rank_dimension"]).to(
kwargs["dtype"] if "dtype" in kwargs else torch.bfloat16)
Expand Down
69 changes: 63 additions & 6 deletions pyreft/reft_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,28 +79,85 @@ def compute_loss(
return_outputs=False
):
# run intervened forward pass
unit_locations = None
if "intervention_locations" in inputs:
unit_locations={"sources->base": (
None,
inputs["intervention_locations"].permute(1, 0, 2).tolist()
)}

_, cf_outputs = intervenable(
{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"]
},
unit_locations={"sources->base": (
None,
inputs["intervention_locations"].permute(1, 0, 2).tolist()
)},
unit_locations=unit_locations,
labels=inputs["labels"],
subspaces=inputs["subspaces"].permute(1, 0, 2).tolist() if "subspaces" in inputs else None
)
# return
return (cf_outputs.loss, cf_outputs) if return_outputs else cf_outputs.loss
return (cf_outputs, cf_outputs) if return_outputs else cf_outputs.loss


class ReftTrainerForCausalLM(ReftTrainer):
def get_train_dataloader(self) -> DataLoader:
return make_dataloader(self.train_dataset, self._train_batch_size, self.data_collator, shuffle=True)


class ReftTrainerForSequenceClassification(ReftTrainer):
def compute_loss(
self,
intervenable: pv.IntervenableModel,
inputs,
return_outputs=False
):
# run intervened forward pass
unit_locations = None
if "intervention_locations" in inputs:
unit_locations={"sources->base": (
None,
inputs["intervention_locations"].permute(1, 0, 2).tolist()
)}

_, cf_outputs = intervenable(
{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"]
},
unit_locations=unit_locations,
labels=inputs["labels"],
subspaces=inputs["subspaces"].permute(1, 0, 2).tolist() if "subspaces" in inputs else None
)
# classification loss on counterfactual labels
logits = cf_outputs.logits
labels = inputs["labels"]

if self.model.model.config.problem_type is None:
if self.model.model.num_labels == 1:
problem_type = "regression"
elif self.model.model.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
problem_type = "single_label_classification"
else:
problem_type = "multi_label_classification"
else:
problem_type = self.model.model.config.problem_type

if problem_type == "regression":
loss_fct = MSELoss()
if self.model.model.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze().to(torch.bfloat16))
else:
loss = loss_fct(logits, labels.to(torch.bfloat16))
elif problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.model.model.num_labels), labels.view(-1))
elif problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)

# return
return (loss, cf_outputs) if return_outputs else loss

def evaluate(
self, ignore_keys,
):
Expand Down
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ protobuf>=3.20.0
matplotlib>=3.7.4
ipywidgets>=8.1.1
plotnine>=0.12.4
huggingface-hub==0.23.0
huggingface-hub
numpy>=1.26.4
accelerate>=0.29.1
sentencepiece>=0.1.96
Expand Down