Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PLT: Hottest temperature masking and filtering #14

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,14 @@ $ ./opencv.py

<br>

Changes in opencv.py file:
- Computed temperature for each pixel based on range between min/max of camera
- Based on a temperature threshold, masked the area of interest (in this case hottest)
- Drawing a contour of the masked area on the camera frame to mark hottest area
- Color clustering the mask to get a mean value of the pixels in order to differentiate between regions of temperature. Each cluster's center is computed as a mean and marked by a green dot

When running the program a window for each will be opened. The cluster number and threshold can be changed in the code in the call of temp_clustering method and hot_area repectively

## Related projects

- https://gitlab.com/netman69/inficam
Expand Down
36 changes: 36 additions & 0 deletions opencv.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,9 @@
cap = ht301_hacklib.T2SPLUS()
window_name = str(type(cap).__name__)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.namedWindow("hottest_area_mask", cv2.WINDOW_NORMAL)
cv2.namedWindow("clustered_temp", cv2.WINDOW_NORMAL)
cv2.namedWindow("Hot_area_Contour", cv2.WINDOW_NORMAL)

orientation = 0 # 0, 90, 180, 270

Expand Down Expand Up @@ -107,9 +110,42 @@ def get_fps(self):

frame = rotate_frame(frame, orientation)

# Mapping temperature to pixels
min_temp = info['Tmin_C']
max_temp = info['Tmax_C']
temperature_image = utils.temp_img(frame, min_temp, max_temp)

# Hottest area segmentation
mask, hottest_area = utils.hot_area(frame, temperature_image, threshold = 28)
cv2.imshow('hottest_area_mask', hottest_area)

# Contouring the hottest area
cont_frame = utils.contoured_hottest_area(frame, mask)
cv2.imshow('Hot_area_Contour', cont_frame)

# Color clustering using K-means
clusters, cluster_centers, clustered_temp = utils.temp_clustering(hottest_area, cluster_no = 7)

# Finding cluster centroid location
centroid_locations = utils.cluster_centroids(cluster_centers, clustered_temp)
clustered_temp[centroid_locations[:, 0], centroid_locations[:, 1]] = (0, 255, 0)
t = '%.2fC' % max_temp
clustered_temp = cv2.putText(
clustered_temp,
'(Exp) PLT: ' + t,
(100, 185),
cv2.FONT_HERSHEY_PLAIN,
1,
(0, 255, 0),
1,
cv2.LINE_AA
)
cv2.imshow('clustered_temp', clustered_temp)

frame = np.kron(frame, np.ones((upscale_factor, upscale_factor, 1))).astype(
np.uint8
)

if draw_temp:
utils.drawTemperature(
frame,
Expand Down
49 changes: 49 additions & 0 deletions utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,3 +163,52 @@ def get_pos(self, name, annotation_frame, roi):
else:
pos = name
return pos

def pixel_to_temp(pixel_value, min_temp, max_temp):
return ((pixel_value / 255) * (max_temp - min_temp)) + min_temp


def temp_img(frame, min_temp, max_temp):
normalized_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
normalized_image = cv2.normalize(normalized_image, None, 0, 255, cv2.NORM_MINMAX)
return pixel_to_temp(normalized_image, min_temp, max_temp)


def hot_area(frame, temperature_image, threshold):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
mask = np.where(temperature_image < threshold, 0, gray)
return mask, cv2.bitwise_and(frame, frame, mask=mask)


def contoured_hottest_area(frame, mask):
cont_frame = frame.copy()
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(cont_frame, contours, -1, (0, 255, 0), 2)
return cont_frame


def temp_clustering(hottest_area, cluster_no):
pic = cv2.cvtColor(hottest_area, cv2.COLOR_BGR2RGB)
pixel_vals = pic.reshape((-1, 3))
pixel_vals = np.float32(pixel_vals)

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.9)
k = cluster_no
retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria, 20, cv2.KMEANS_PP_CENTERS)

centers = np.uint8(centers)
segmented_data = centers[labels.flatten()]
segmented_image = segmented_data.reshape(pic.shape)
return k, centers, cv2.cvtColor(segmented_image, cv2.COLOR_RGB2BGR)


def cluster_centroids(cluster_centers, clustered_temp):
centroid_locations = []

for row in cluster_centers:
cluster_i = np.where(clustered_temp == row)
center_x = np.mean(cluster_i[0]).astype(int)
center_y = np.mean(cluster_i[1]).astype(int)
centroid_locations.append([center_x, center_y])

return np.array(centroid_locations)