-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
de33c8f
commit 466c026
Showing
1 changed file
with
103 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
r""" | ||
This files generates the results for Table (1) and (2) in the BFit paper. | ||
Specifically, it optimizes the Kullback-Leibler Divergence using the fixed | ||
point iteration method. A normalized Gaussian model is used whose initial | ||
guess is the universal Gaussian basis-set multipled by two. The constraint | ||
that the integral of the model should equal the atomic number is added, via | ||
the attribute `integral_dens`. The attribute `disp` displays the results | ||
at each iteration. | ||
""" | ||
import numpy as np | ||
|
||
from bfit.density import SlaterAtoms | ||
from bfit.fit import ScipyFit,KLDivergenceFPI | ||
from bfit.grid import ClenshawRadialGrid | ||
from bfit.model import AtomicGaussianDensity | ||
from bfit.measure import KLDivergence | ||
from bfit.parse_ugbs import get_ugbs_exponents | ||
from atomdb import load | ||
|
||
results_final = {} | ||
atoms = ["H", "C", "N", "O", "F", "P", "S", "Cl"] | ||
atomic_numbs = [1, 6, 7, 8, 9, 15, 16, 17] #[1 + i for i in range(0, len(atoms))] | ||
mult = [2, 3, 4, 3, 2, 4, 3, 2] | ||
for k, element in enumerate(atoms): | ||
print("Start Atom %s" % element) | ||
|
||
# Construct a integration grid | ||
atomic_numb = atomic_numbs[k] | ||
grid = ClenshawRadialGrid( | ||
atomic_numb, num_core_pts=10000, num_diffuse_pts=899, include_origin=True#, extra_pts=[50,75,100], | ||
) | ||
|
||
# Initial Guess constructed from UGBS | ||
ugbs = get_ugbs_exponents(element) | ||
exps_s = ugbs["S"] | ||
num_s = len(exps_s) | ||
exps_p = ugbs["P"] | ||
num_p = len(exps_p) | ||
coeffs = np.array([atomic_numb / (num_s + num_p)] * (num_s + num_p)) | ||
e_0 = np.array(exps_s + exps_p) * 2.0 | ||
|
||
# Construct Atomic Density and Fitting Object | ||
#density = SlaterAtoms(element=element).atomic_density(grid.points) | ||
# Use AtomDB to calculate the density | ||
atom = load(elem=element, charge=0, mult=mult[k], dataset="hci", datapath="/home/ali-tehrani/SoftwareProjects/AtomDBdata") | ||
|
||
dens = atom.dens_func() | ||
density = dens(grid.points) | ||
|
||
import matplotlib.pyplot as plt | ||
# plt.plot(grid.points, density, "bo-") | ||
# plt.show() | ||
print(density[-1], grid.points[-1], grid.points[0:3]) | ||
density[density < 0.0] = 0.0 | ||
# continue | ||
# assert 1 == 0 | ||
model = AtomicGaussianDensity(grid.points, num_s=num_s, num_p=num_p, normalize=True) | ||
fit = KLDivergenceFPI(grid, density, model, mask_value=1e-18, spherical=True, | ||
integral_dens=atomic_numb) | ||
|
||
# Run the Kullback-Leibler FPI Method | ||
results = fit.run( | ||
coeffs, e_0, maxiter=10000, c_threshold=1e-6, e_threshold=1e-6, d_threshold=1e-14, | ||
disp=True | ||
) | ||
# Construct Fitting Object using SLSQP and optimizing KL | ||
# measure = KLDivergence(mask_value=1e-18) | ||
# fit_KL_slsqp = ScipyFit(grid, density, model, measure=measure, method="SLSQP", spherical=True) | ||
# # Run the SLSQP optimization algorithm | ||
# results = fit_KL_slsqp.run(coeffs, e_0, maxiter=10000, disp=True, with_constraint=True, tol=1e-14) | ||
|
||
print("KL-FPI INFO") | ||
print("-----------") | ||
print("Success %s" % results["success"]) | ||
print("Final Coeffs") | ||
print(results["coeffs"]) | ||
print("Final Exponents") | ||
print(results["exps"]) | ||
print("Integration Value & L1 & L_infinity & LS & KL (With 4 pi r^2 included)") | ||
p = results["performance"][-1] | ||
print(p) | ||
# Calculate the relative errors | ||
spherical = 4.0 * np.pi * grid.points**2.0 | ||
l1 = results["performance"][-1][1] / grid.integrate(density * spherical) | ||
linf = results["performance"][-1][2] / np.max(density) | ||
ls = results["performance"][-1][3] / grid.integrate(density**2.0 * spherical) | ||
kl = results["performance"][-1][4] / grid.integrate( | ||
density * np.log(density) * spherical | ||
) | ||
print("Relative Errors L1 & L_infinity & LS & KL (With 4 pi r^2 included)") | ||
print([l1, linf, ls, kl]) | ||
|
||
# Store the results | ||
results_final[element + "_coeffs_s"] = results["coeffs"][:num_s] | ||
results_final[element + "_exps_s"] = results["exps"][:num_s] | ||
results_final[element + "_coeffs_p"] = results["coeffs"][num_s:] | ||
results_final[element + "_exps_p"] = results["exps"][num_s:] | ||
results_final[element + "_errors_4pir2"] = results["performance"][-1] | ||
results_final[element + "_sucess"] = results["success"] | ||
results_final[element + "_errors"] = [l1, linf, ls, kl] | ||
|
||
np.savez("./result_kl_fpi_method_cugbasis_atomdb_hci.npz", **results_final) |