Skip to content

Commit

Permalink
ultralytics 8.2.68 new HUB GCP region latency tests (ultralytics#14753
Browse files Browse the repository at this point in the history
)

Signed-off-by: Glenn Jocher <[email protected]>
Co-authored-by: UltralyticsAssistant <[email protected]>
  • Loading branch information
glenn-jocher and UltralyticsAssistant authored Jul 28, 2024
1 parent 01977da commit a7a140f
Show file tree
Hide file tree
Showing 4 changed files with 178 additions and 1 deletion.
16 changes: 16 additions & 0 deletions docs/en/reference/hub/google/__init__.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
---
description: Reference for the GCPRegions class in Ultralytics, which provides functionality for testing and analyzing latency across Google Cloud Platform regions.
keywords: Ultralytics, GCP, Google Cloud Platform, regions, latency testing, cloud computing, networking, performance analysis
---

# Reference for `ultralytics/hub/google/__init__.py`

!!! Note

This file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/google/\_\_init\_\_.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/hub/google/__init__.py). If you spot a problem please help fix it by [contributing](https://docs.ultralytics.com/help/contributing/) a [Pull Request](https://github.com/ultralytics/ultralytics/edit/main/ultralytics/hub/google/__init__.py) 🛠️. Thank you 🙏!

<br>

## ::: ultralytics.hub.google.GCPRegions

<br><br>
2 changes: 2 additions & 0 deletions mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -476,6 +476,8 @@ nav:
- hub:
- __init__: reference/hub/__init__.md
- auth: reference/hub/auth.md
- google:
- __init__: reference/hub/google/__init__.md
- session: reference/hub/session.md
- utils: reference/hub/utils.md
- models:
Expand Down
2 changes: 1 addition & 1 deletion ultralytics/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license

__version__ = "8.2.67"
__version__ = "8.2.68"

import os

Expand Down
159 changes: 159 additions & 0 deletions ultralytics/hub/google/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license

import concurrent.futures
import statistics
import time
from typing import List, Optional, Tuple

import requests


class GCPRegions:
"""
A class for managing and analyzing Google Cloud Platform (GCP) regions.
This class provides functionality to initialize, categorize, and analyze GCP regions based on their
geographical location, tier classification, and network latency.
Attributes:
regions (Dict[str, Tuple[int, str, str]]): A dictionary of GCP regions with their tier, city, and country.
Methods:
tier1: Returns a list of tier 1 GCP regions.
tier2: Returns a list of tier 2 GCP regions.
lowest_latency: Determines the GCP region(s) with the lowest network latency.
Examples:
>>> from ultralytics.hub.google import GCPRegions
>>> regions = GCPRegions()
>>> lowest_latency_region = regions.lowest_latency(verbose=True, attempts=3)
>>> print(f"Lowest latency region: {lowest_latency_region[0][0]}")
"""

def __init__(self):
"""Initializes the GCPRegions class with predefined Google Cloud Platform regions and their details."""
self.regions = {
"asia-east1": (1, "Taiwan", "China"),
"asia-east2": (2, "Hong Kong", "China"),
"asia-northeast1": (1, "Tokyo", "Japan"),
"asia-northeast2": (1, "Osaka", "Japan"),
"asia-northeast3": (2, "Seoul", "South Korea"),
"asia-south1": (2, "Mumbai", "India"),
"asia-south2": (2, "Delhi", "India"),
"asia-southeast1": (2, "Jurong West", "Singapore"),
"asia-southeast2": (2, "Jakarta", "Indonesia"),
"australia-southeast1": (2, "Sydney", "Australia"),
"australia-southeast2": (2, "Melbourne", "Australia"),
"europe-central2": (2, "Warsaw", "Poland"),
"europe-north1": (1, "Hamina", "Finland"),
"europe-southwest1": (1, "Madrid", "Spain"),
"europe-west1": (1, "St. Ghislain", "Belgium"),
"europe-west10": (2, "Berlin", "Germany"),
"europe-west12": (2, "Turin", "Italy"),
"europe-west2": (2, "London", "United Kingdom"),
"europe-west3": (2, "Frankfurt", "Germany"),
"europe-west4": (1, "Eemshaven", "Netherlands"),
"europe-west6": (2, "Zurich", "Switzerland"),
"europe-west8": (1, "Milan", "Italy"),
"europe-west9": (1, "Paris", "France"),
"me-central1": (2, "Doha", "Qatar"),
"me-west1": (1, "Tel Aviv", "Israel"),
"northamerica-northeast1": (2, "Montreal", "Canada"),
"northamerica-northeast2": (2, "Toronto", "Canada"),
"southamerica-east1": (2, "São Paulo", "Brazil"),
"southamerica-west1": (2, "Santiago", "Chile"),
"us-central1": (1, "Iowa", "United States"),
"us-east1": (1, "South Carolina", "United States"),
"us-east4": (1, "Northern Virginia", "United States"),
"us-east5": (1, "Columbus", "United States"),
"us-south1": (1, "Dallas", "United States"),
"us-west1": (1, "Oregon", "United States"),
"us-west2": (2, "Los Angeles", "United States"),
"us-west3": (2, "Salt Lake City", "United States"),
"us-west4": (2, "Las Vegas", "United States"),
}

def tier1(self) -> List[str]:
"""Returns a list of GCP regions classified as tier 1 based on predefined criteria."""
return [region for region, info in self.regions.items() if info[0] == 1]

def tier2(self) -> List[str]:
"""Returns a list of GCP regions classified as tier 2 based on predefined criteria."""
return [region for region, info in self.regions.items() if info[0] == 2]

@staticmethod
def _ping_region(region: str, attempts: int = 1) -> Tuple[str, float, float, float, float]:
"""Pings a specified GCP region and returns latency statistics: mean, min, max, and standard deviation."""
url = f"https://{region}-docker.pkg.dev"
latencies = []
for _ in range(attempts):
try:
start_time = time.time()
_ = requests.head(url, timeout=5)
latency = (time.time() - start_time) * 1000 # convert latency to milliseconds
if latency != float("inf"):
latencies.append(latency)
except requests.RequestException:
pass
if not latencies:
return region, float("inf"), float("inf"), float("inf"), float("inf")

std_dev = statistics.stdev(latencies) if len(latencies) > 1 else 0
return region, statistics.mean(latencies), std_dev, min(latencies), max(latencies)

def lowest_latency(
self,
top: int = 1,
verbose: bool = False,
tier: Optional[int] = None,
attempts: int = 1,
) -> List[Tuple[str, float, float, float, float]]:
"""
Determines the GCP regions with the lowest latency based on ping tests.
Args:
top (int): Number of top regions to return.
verbose (bool): If True, prints detailed latency information for all tested regions.
tier (int | None): Filter regions by tier (1 or 2). If None, all regions are tested.
attempts (int): Number of ping attempts per region.
Returns:
(List[Tuple[str, float, float, float, float]]): List of tuples containing region information and
latency statistics. Each tuple contains (region, mean_latency, std_dev, min_latency, max_latency).
Examples:
>>> regions = GCPRegions()
>>> results = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=2)
>>> print(results[0][0]) # Print the name of the lowest latency region
"""
if verbose:
print(f"Testing GCP regions for latency (with {attempts} {'retry' if attempts == 1 else 'attempts'})...")

regions_to_test = [k for k, v in self.regions.items() if v[0] == tier] if tier else list(self.regions.keys())
with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor:
results = list(executor.map(lambda r: self._ping_region(r, attempts), regions_to_test))

sorted_results = sorted(results, key=lambda x: x[1])

if verbose:
print(f"{'Region':<20} {'Location':<35} {'Tier':<5} {'Latency (ms)'}")
for region, mean, std, min_, max_ in sorted_results:
tier, city, country = self.regions[region]
location = f"{city}, {country}"
if mean == float("inf"):
print(f"{region:<20} {location:<35} {tier:<5} {'Timeout'}")
else:
print(f"{region:<20} {location:<35} {tier:<5} {mean:.0f} ± {std:.0f} ({min_:.0f} - {max_:.0f})")
print(f"\nLowest latency region{'s' if top > 1 else ''}:")
for region, mean, std, min_, max_ in sorted_results[:top]:
tier, city, country = self.regions[region]
location = f"{city}, {country}"
print(f"{region} ({location}, {mean:.0f} ± {std:.0f} ms ({min_:.0f} - {max_:.0f}))")

return sorted_results[:top]


# Usage example
if __name__ == "__main__":
regions = GCPRegions()
top_3_latency_tier1 = regions.lowest_latency(top=3, verbose=True, tier=1, attempts=3)

0 comments on commit a7a140f

Please sign in to comment.