-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #147 from trishullab/jasper
batch19982005hard lean fixes and Isabelle
- Loading branch information
Showing
15 changed files
with
171 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
theory putnam_1998_a2 imports Complex_Main | ||
"HOL-Analysis.Lebesgue_Measure" | ||
begin | ||
|
||
theorem putnam_1998_a2: | ||
fixes quadrant :: "(real^2) \<Rightarrow> bool" | ||
and isarc :: "(real^2) \<Rightarrow> (real^2) \<Rightarrow> bool" | ||
and arc :: "(real^2) \<Rightarrow> (real^2) \<Rightarrow> ((real^2) set)" | ||
and A :: "(real^2) \<Rightarrow> (real^2) \<Rightarrow> real" | ||
and B :: "(real^2) \<Rightarrow> (real^2) \<Rightarrow> real" | ||
defines "quadrant \<equiv> (\<lambda>P::real^2. P$1 > 0 \<and> P$2 > 0 \<and> dist 0 P = 1)" | ||
and "isarc \<equiv> (\<lambda>P Q::real^2. quadrant P \<and> quadrant Q \<and> P$1 > Q$1)" | ||
and "arc \<equiv> (\<lambda>P Q::real^2. {R::real^2. quadrant R \<and> P$1 > R$1 \<and> R$1 > Q$1})" | ||
and "A \<equiv> (\<lambda>P Q::real^2. measure lebesgue {S::real^2. (\<exists>R\<in>(arc P Q). R$1 = S$1 \<and> R$2 > S$2 \<and> S$2 > 0)})" | ||
and "B \<equiv> (\<lambda>P Q::real^2. measure lebesgue {S::real^2. (\<exists>R\<in>(arc P Q). R$2 = S$2 \<and> R$1 > S$1 \<and> S$1 > 0)})" | ||
shows "\<exists>f::real\<Rightarrow>real. \<forall>P Q::real^2. (isarc P Q \<longrightarrow> A P Q + B P Q = f (arctan (Q$2/Q$1) - arctan (P$2/P$1)))" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
theory putnam_1998_a6 imports Complex_Main | ||
"HOL-Analysis.Lebesgue_Measure" | ||
begin | ||
|
||
theorem putnam_1998_a6: | ||
fixes A B C :: "real^2" | ||
and threesquare :: "(real^2) \<Rightarrow> (real^2) \<Rightarrow> (real^2) \<Rightarrow> bool" | ||
assumes hint: "\<forall>i\<in>{1,2}. \<exists>a b c::int. A$i = a \<and> B$i = b \<and> C$i = c" | ||
and htriangle: "A \<noteq> B \<and> A \<noteq> C \<and> B \<noteq> C" | ||
and harea: "(dist A B + dist B C) ^ 2 < 8 * (measure lebesgue (convex hull {A, B, C})) + 1" | ||
assumes "threesquare \<equiv> (\<lambda>P Q R::real^2. dist Q P = dist Q R \<and> (P - Q) \<bullet> (R - Q) = 0)" | ||
shows "threesquare A B C \<or> threesquare B C A \<or> threesquare C A B" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
theory putnam_2002_a2 imports Complex_Main | ||
"HOL-Analysis.Finite_Cartesian_Product" | ||
"HOL-Analysis.Linear_Algebra" | ||
begin | ||
|
||
theorem putnam_2002_a2: | ||
fixes hemi :: "(real^3) \<Rightarrow> ((real^3) set)" | ||
defines "hemi \<equiv> (\<lambda>V::real^3. {P::real^3. P \<bullet> V \<ge> 0})" | ||
shows "\<forall>S::(real^3) set. ((S \<subseteq> sphere 0 1 \<and> card S = 5) \<longrightarrow> (\<exists>V::real^3. V \<noteq> 0 \<and> card (S \<inter> hemi V) \<ge> 4))" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
theory putnam_2003_a5 imports Complex_Main | ||
begin | ||
|
||
(* uses (nat \<Rightarrow> int) instead of (Fin (2*m) \<Rightarrow> int) *) | ||
theorem putnam_2003_a5: | ||
fixes n :: nat | ||
and dyckpath :: "nat \<Rightarrow> ((nat \<Rightarrow> int) set)" | ||
and noevenreturn :: "nat \<Rightarrow> ((nat \<Rightarrow> int) set)" | ||
assumes npos: "n > 0" | ||
defines "dyckpath \<equiv> (\<lambda>m::nat. {p::nat\<Rightarrow>int. (\<forall>k::nat\<ge>2*m. p k = 0) \<and> | ||
p ` {0..(2*m-1)} \<subseteq> {-1, 1} \<and> (\<Sum>k::nat\<in>{0..(2*m-1)}. p k) = 0 \<and> (\<forall>j::nat\<in>{0..(2*m-1)}. (\<Sum>k::nat\<in>{0..j}. p k) \<ge> 0)})" | ||
and "noevenreturn \<equiv> (\<lambda>m::nat. {p::nat\<Rightarrow>int. (\<forall>k::nat\<ge>2*m. p k = 0) \<and> | ||
\<not>(\<exists>i::nat\<in>{0..(2*m-1)}. \<exists>j::nat\<in>{0..(2*m-1)}. i < j \<and> p i = 1 \<and> (\<forall>k::nat\<in>{(i+1)..j}. p i = -1) \<and> even (j - i) \<and> (\<Sum>k::nat\<in>{0..j}. p k) = 0)})" | ||
shows "\<exists>f::(nat\<Rightarrow>int)\<Rightarrow>(nat\<Rightarrow>int). (\<forall>y\<in>(dyckpath (n-1)). \<exists>!x::nat\<Rightarrow>int. x \<in> (dyckpath n \<inter> noevenreturn n) \<and> f x = y)" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
theory putnam_2003_b2 imports Complex_Main | ||
begin | ||
|
||
(* uses (nat \<Rightarrow> nat \<Rightarrow> rat) instead of (Fin n \<Rightarrow> {1..n} \<Rightarrow> rat) *) | ||
theorem putnam_2003_b2: | ||
fixes n :: nat | ||
and seq :: "nat \<Rightarrow> nat \<Rightarrow> rat" | ||
assumes hn: "n > 0" | ||
and hinit: "\<forall>j::nat\<in>{1..n}. seq 0 j = 1 / (rat_of_nat j)" | ||
and havg: "\<forall>k::nat\<in>{1..(n-1)}. \<forall>j::nat\<in>{1..(n-k)}. seq k j = (seq (k-1) j + seq (k-1) (j+1)) / 2" | ||
shows "seq (n-1) 1 < 2 / (rat_of_nat n)" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
theory putnam_2003_b5 imports Complex_Main | ||
"HOL-Analysis.Lebesgue_Measure" | ||
begin | ||
|
||
theorem putnam_2003_b5: | ||
fixes A B C :: "real^2" | ||
assumes hABC: "dist 0 A = 1 \<and> dist 0 B = 1 \<and> dist 0 C = 1 \<and> dist A B = dist A C \<and> dist A B = dist B C" | ||
shows "\<exists>f::real\<Rightarrow>real. \<forall>P::real^2. dist 0 P < 1 \<longrightarrow> (\<exists>X Y Z::real^2. | ||
dist X Y = dist P A \<and> dist Y Z = dist P B \<and> dist X Z = dist P C \<and> | ||
measure lebesgue (convex hull {X, Y, Z}) = f (dist 0 P))" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
theory putnam_2004_a5 imports Complex_Main | ||
begin | ||
|
||
(* uses (nat \<times> nat) instead of (Fin m \<times> Fin n) *) | ||
theorem putnam_2004_a5: | ||
fixes m n :: nat | ||
and adj :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" | ||
and connected :: "((nat \<times> nat) \<Rightarrow> bool) \<Rightarrow> (nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" | ||
and cmr :: "((nat \<times> nat) \<Rightarrow> bool) \<Rightarrow> nat" | ||
assumes mnpos: "m * n > 0" | ||
defines "adj \<equiv> (\<lambda>(a::nat,b::nat)(c::nat,d::nat). a < m \<and> b < n \<and> c < m \<and> d < n \<and> ((a = c \<and> dist b d = 1) \<or> (b = d \<and> dist a c = 1)))" | ||
and "connected \<equiv> (\<lambda>(C::(nat\<times>nat)\<Rightarrow>bool)(P::nat\<times>nat)(Q::nat\<times>nat). (\<exists>(S::(nat\<times>nat) list). length S > 0 \<and> | ||
S!0 = P \<and> last S = Q \<and> (\<exists>p::bool. \<forall>i::nat\<in>{0..((length S)-1)}. C (S!i) = p) \<and> (\<forall>i::nat\<in>{0..((length S)-2)}. adj (S!i) (S!(i+1)))))" | ||
and "cmr \<equiv> (\<lambda>C::(nat\<times>nat)\<Rightarrow>bool. card {R::(nat\<times>nat) set. (\<exists>P\<in>R. fst P < m \<and> snd P < n \<and> (\<forall>Q::nat\<times>nat. (Q \<in> R \<longleftrightarrow> connected C P Q)))})" | ||
shows "(\<Sum>C\<in>{C'::(nat\<times>nat)\<Rightarrow>bool. (\<forall>i::nat\<ge>m. \<forall>j::nat\<ge>n. C (i,j) = False)}. cmr C) > (2 ^ (m*n)) * (m*n / 8)" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
theory putnam_2004_b4 imports Complex_Main | ||
begin | ||
|
||
definition putnam_2004_b4_solution :: "nat \<Rightarrow> complex \<Rightarrow> complex" where "putnam_2004_b4_solution \<equiv> undefined" | ||
(* (\<lambda>(n::nat)(z::complex). z + n) *) | ||
theorem putnam_2004_b4: | ||
fixes n :: nat | ||
and Rk :: "nat \<Rightarrow> complex \<Rightarrow> complex" | ||
and R :: "nat \<Rightarrow> complex \<Rightarrow> complex" | ||
assumes nge2: "n \<ge> 2" | ||
defines "Rk \<equiv> (\<lambda>(k::nat)(Q::complex). k + exp (\<i> * 2 * pi / n) * (Q - k))" | ||
assumes hR: "R 0 = id \<and> (\<forall>k::nat. R (k+1) = Rk (k+1) \<circ> R k)" | ||
shows "R n = putnam_2004_b4_solution n" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
theory putnam_2005_a2 imports Complex_Main | ||
begin | ||
|
||
(* uses (nat \<Rightarrow> (int \<times> int)) instead of ({1..(3*n)} \<Rightarrow> (int \<times> int)) *) | ||
definition putnam_2005_a2_solution :: "nat \<Rightarrow> nat" where "putnam_2005_a2_solution \<equiv> undefined" | ||
(* (\<lambda>n::nat. if n = 1 then 0 else 2 ^ (n - 2)) *) | ||
theorem putnam_2005_a2: | ||
fixes n :: nat | ||
and S :: "(int \<times> int) set" | ||
and unit :: "(int \<times> int) \<Rightarrow> (int \<times> int) \<Rightarrow> bool" | ||
and rooktour :: "(nat \<Rightarrow> (int \<times> int)) \<Rightarrow> bool" | ||
assumes npos: "n > 0" | ||
defines "S \<equiv> {1..n} \<times> {1..3}" | ||
and "unit \<equiv> (\<lambda>(a::int,b::int)(c::int,d::int). (a = c \<and> \<bar>d - b\<bar> = 1) \<or> (b = d \<and> \<bar>c - a\<bar> = 1))" | ||
and "rooktour \<equiv> (\<lambda>p::nat\<Rightarrow>(int\<times>int). (\<forall>P\<in>S. \<exists>!i::nat\<in>{1..(3*n)}. p i = P) \<and> (\<forall>i::nat\<in>{1..(3*n-1)}. unit (p i) (p (i+1))) \<and> p 0 = (0, 0) \<and> (\<forall>i::nat>(3*n). p i = (0, 0)))" | ||
shows "card {p::nat\<Rightarrow>(int\<times>int). rooktour p \<and> p 1 = (1, 1) \<and> p (3*n) = (n, 1)} = putnam_2005_a2_solution n" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
theory putnam_2005_b5 imports Complex_Main | ||
"HOL-Analysis.Derivative" | ||
begin | ||
|
||
theorem putnam_2005_b5: | ||
fixes n :: nat | ||
and P :: "('n::finite \<Rightarrow> real) \<Rightarrow> real" | ||
and ispoly :: "(('n \<Rightarrow> real) \<Rightarrow> real) \<Rightarrow> bool" | ||
and P2deriv :: "'n \<Rightarrow> ('n \<Rightarrow> real) \<Rightarrow> real" | ||
and Psumsq :: "('n \<Rightarrow> real) \<Rightarrow> real" | ||
assumes npos: "n > 0" | ||
and pncard: "CARD('n) = n" | ||
defines "ispoly \<equiv> (\<lambda>P'::('n\<Rightarrow>real)\<Rightarrow>real. (\<exists>l::(real\<times>('n\<Rightarrow>nat)) list. \<forall>x::'n\<Rightarrow>real. P' x = (\<Sum>j::nat=0..((length l)-1). (fst (l!j)) * (\<Prod>i::'n\<in>UNIV. (x i) ^ ((snd (l!j)) i)))))" | ||
assumes Ppoly: "ispoly P" | ||
defines "P2deriv \<equiv> (\<lambda>(i::'n)(x::'n\<Rightarrow>real). (deriv^^2) (\<lambda>xi::real. P (\<lambda>i'::'n \<Rightarrow> if i' = i then xi else x i')) (x i))" | ||
assumes hderiv: "\<forall>x::'n\<Rightarrow>real. (\<Sum>i::'n\<in>UNIV. P2deriv i x) = 0" | ||
defines "Psumsq \<equiv> (\<lambda>x::'n\<Rightarrow>real. (\<Sum>i::'n\<in>UNIV. (x i)^2))" | ||
assumes hsumsq: "\<exists>Q::('n\<Rightarrow>real)\<Rightarrow>real. ispoly Q \<and> (\<forall>x::'n\<Rightarrow>real. (Psumsq x) * (Q x) = P x)" | ||
shows "P = (\<lambda>x::'n\<Rightarrow>real. 0)" | ||
sorry | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters