Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix a few minor Lean misformalisations #206

Merged
merged 12 commits into from
Aug 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion lean4/src/putnam_1967_b1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ theorem putnam_1967_b1
(hR : R = midpoint ℝ (L 5) (L 0))
(hr : r > 0)
(hcyclic : ∃ (O : EuclideanSpace ℝ (Fin 2)), ∀ i : ZMod 6, dist O (L i) = r)
(horder : ∀ i j : ZMod 6, i + 1 = j ∨ i = j + 1 ∨ segment ℝ (L i) (L j) ∩ interior (convexHull ℝ {L k | k : ZMod 6}) ≠ ∅)
(horder : ∀ i j : ZMod 6, i ≠ j → i + 1 = j ∨ i = j + 1 ∨ segment ℝ (L i) (L j) ∩ interior (convexHull ℝ {L k | k : ZMod 6}) ≠ ∅)
(hlens : dist (L 0) (L 1) = r ∧ dist (L 2) (L 3) = r ∧ dist (L 4) (L 5) = r)
(hdist : L 1 ≠ L 2 ∧ L 3 ≠ L 4 ∧ L 5 ≠ L 0)
: dist P Q = dist R P ∧ dist Q R = dist P Q :=
Expand Down
10 changes: 5 additions & 5 deletions lean4/src/putnam_1989_a1.lean
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
import Mathlib
open BigOperators

abbrev putnam_1989_a1_solution : ℕ := sorry
abbrev putnam_1989_a1_solution : ℕ := sorry
-- 1
theorem putnam_1989_a1
(pdigalt : List ℕ → Prop)
(hpdigalt : ∀ pdig : List ℕ, pdigalt pdig = Odd pdig.length ∧ (∀ i : Fin pdig.length, pdig.get i = if Even (i : ℕ) then 1 else 0))
: {p : ℕ | p > 0 ∧ p.Prime ∧ pdigalt (Nat.digits 10 p)}.encard = putnam_1989_a1_solution :=
sorry
(pdigalt : List ℕ → Prop)
(hpdigalt : ∀ l, pdigalt l ↔ Odd l.length ∧ (∀ i, l.get i = if Even (i : ℕ) then 1 else 0)) :
{p : ℕ | p.Prime ∧ pdigalt (Nat.digits 10 p)}.encard = putnam_1989_a1_solution :=
sorry
12 changes: 6 additions & 6 deletions lean4/src/putnam_1990_b5.lean
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
import Mathlib
open BigOperators

open Filter Topology Nat
open Filter Polynomial Topology Nat

abbrev putnam_1990_b5_solution : Prop := sorry
-- True
theorem putnam_1990_b5
(anpoly : (ℕ → ℝ) → ℕ → Polynomial ℝ)
(hanpoly : ∀ (a : ℕ → ℝ) (n : ℕ), (anpoly a n).degree = n ∧ (∀ i : Fin (n + 1), (anpoly a n).coeff i = a i))
: (∃ a : ℕ → ℝ, (∀ i : ℕ, a i ≠ 0) ∧ (∀ n ≥ 1, {r : ℝ | (anpoly a n).eval r = 0}.encard = n)) ↔ putnam_1990_b5_solution :=
sorry
theorem putnam_1990_b5 :
(∃ a : ℕ → ℝ, (∀ i, a i ≠ 0) ∧
(∀ n ≥ 1, (∑ i in Finset.Iic n, a i • X ^ i : Polynomial ℝ).roots.toFinset.card = n)) ↔
putnam_1990_b5_solution :=
sorry
6 changes: 3 additions & 3 deletions lean4/src/putnam_1991_a6.lean
GeorgeTsoukalas marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -9,12 +9,12 @@ theorem putnam_1991_a6
(agt bge bg1 bg2 : ℕ × (ℕ → ℕ) → Prop)
(A g B: ℕ → ℕ)
(hnabsum : ∀ n ≥ 1, ∀ ab : ℕ × (ℕ → ℕ), nabsum n ab = (ab.1 ≥ 1 ∧ (∀ i < ab.1, ab.2 i > 0) ∧ (∀ i ≥ ab.1, ab.2 i = 0) ∧ (∑ i : Fin ab.1, ab.2 i) = n))
(hagt : ∀ a : ℕ × (ℕ → ℕ), agt a = (∀ i : Fin (a.1 - 2), a.2 i > a.2 (i + 1) + a.2 (i + 2)) ∧ a.2 (a.1 - 2) > a.2 (a.1 - 1))
(hagt : ∀ a : ℕ × (ℕ → ℕ), agt a (∀ i : Fin (a.1 - 2), a.2 i > a.2 (i + 1) + a.2 (i + 2)) ∧ 1 < a.1 → a.2 (a.1 - 2) > a.2 (a.1 - 1))
(hA : ∀ n ≥ 1, A n = {a : ℕ × (ℕ → ℕ) | nabsum n a ∧ agt a}.encard)
(hbge : ∀ b : ℕ × (ℕ → ℕ), bge b = ∀ i : Fin (b.1 - 1), b.2 i ≥ b.2 (i + 1))
(hg : g 0 = 1 ∧ g 1 = 2 ∧ (∀ j ≥ 2, g j = g (j - 1) + g (j - 2) + 1))
(hbg1 : ∀ b : ℕ × (ℕ → ℕ), bg1 b = ∀ i : Fin b.1, ∃ j : ℕ, b.2 i = g j)
(hbg2 : ∀ b : ℕ × (ℕ → ℕ), bg2 b = ∃ k : ℕ, b.2 0 = g k ∧ (∀ j ≤ k, ∃ i : Fin b.1, b.2 i = g j))
(hbg1 : ∀ b : ℕ × (ℕ → ℕ), bg1 b ∀ i : Fin b.1, ∃ j : ℕ, b.2 i = g j)
(hbg2 : ∀ b : ℕ × (ℕ → ℕ), bg2 b ∃ k : ℕ, b.2 0 = g k ∧ (∀ j ≤ k, ∃ i : Fin b.1, b.2 i = g j))
(hB : ∀ n ≥ 1, B n = {b : ℕ × (ℕ → ℕ) | nabsum n b ∧ bge b ∧ bg1 b ∧ bg2 b}.encard)
: ∀ n ≥ 1, A n = B n :=
sorry
9 changes: 5 additions & 4 deletions lean4/src/putnam_1992_b2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@ open BigOperators
open Topology Filter Nat Function Polynomial

theorem putnam_1992_b2
(Q : ℕ → ℕ → ℕ)
(hQ : Q = fun n k ↦ coeff ((1 + X + X ^ 2 + X ^ 3) ^ n) k)
: (∀ n k : ℕ, Q n k = ∑ j : Finset.range (k + 1), choose n j * choose n (k - 2 * j)) :=
sorry
(Q : ℕ → ℕ → ℕ)
(hQ : Q = fun n k ↦ coeff ((1 + X + X ^ 2 + X ^ 3) ^ n) k)
(n k : ℕ) :
Q n k = ∑ j in Finset.Iic k, choose n j * (if 2 * j ≤ k then choose n (k - 2 * j) else 0) :=
sorry
13 changes: 7 additions & 6 deletions lean4/src/putnam_1999_a3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,10 @@ open BigOperators
open Filter Topology Metric

theorem putnam_1999_a3
(f : ℝ → ℝ)
(hf : f = fun x => 1/(1 - 2 * x - x^2))
(a : ℕ → ℝ)
(hf : ∃ ε > 0, ∀ x ∈ ball 0 ε, Tendsto (λ n => ∑ i in Finset.range n, (a n) * x^n) atTop (𝓝 (f x)))
: ∀ n : ℕ, ∃ m : ℕ, (a n)^2 + (a (n + 1))^2 = a m :=
sorry
(f : ℝ → ℝ)
(hf : f = fun x ↦ 1 / (1 - 2 * x - x ^ 2))
(a : ℕ → ℝ)
(hf' : ∀ᶠ x in 𝓝 0, Tendsto (fun N : ℕ ↦ ∑ n in Finset.range N, (a n) * x ^ n) atTop (𝓝 (f x)))
(n : ℕ) :
∃ m : ℕ, (a n) ^ 2 + (a (n + 1)) ^ 2 = a m :=
sorry
10 changes: 6 additions & 4 deletions lean4/src/putnam_2004_b5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,9 @@ open Nat Topology Filter
abbrev putnam_2004_b5_solution : ℝ := sorry
-- 2 / Real.exp 1
theorem putnam_2004_b5
(xprod : ℝ → ℝ)
(hxprod : ∀ x ≥ 0, Tendsto (fun N : ℕ => ∏ n : Fin N, ((1 + x ^ (n.1 + 1)) / (1 + x ^ n.1)) ^ (x ^ n.1)) atTop (𝓝 (xprod x)))
: Tendsto xprod (𝓝[<] 1) (𝓝 putnam_2004_b5_solution) :=
sorry
(xprod : ℝ → ℝ)
(hxprod : ∀ x ∈ Set.Ioo 0 1,
Tendsto (fun N ↦ ∏ n in Finset.range N, ((1 + x ^ (n + 1)) / (1 + x ^ n)) ^ (x ^ n))
atTop (𝓝 (xprod x))) :
Tendsto xprod (𝓝[<] 1) (𝓝 putnam_2004_b5_solution) :=
sorry
19 changes: 11 additions & 8 deletions lean4/src/putnam_2005_a3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,14 @@ open BigOperators
open Nat Set

theorem putnam_2005_a3
(p : Polynomial ℂ)
(n : ℕ)
(g : ℂ → ℂ)
(pdeg : p.degree = n)
(pzeros : ∀ z : ℂ, p.eval z = 0 → Complex.abs z = 1)
(hg : ∀ z : ℂ, g z = (p.eval z) / z ^ ((n : ℂ) / 2))
: ∀ z : ℂ, (deriv g z = 0) → (Complex.abs z = 1) :=
sorry
(p : Polynomial ℂ)
(n : ℕ)
(hn : 0 < n)
(g : ℂ → ℂ)
(pdeg : p.degree = n)
(pzeros : ∀ z : ℂ, p.eval z = 0 → Complex.abs z = 1)
(hg : ∀ z : ℂ, g z = (p.eval z) / z ^ ((n : ℂ) / 2))
(z : ℂ)
(hz : deriv g z = 0) :
Complex.abs z = 1 :=
sorry
15 changes: 9 additions & 6 deletions lean4/src/putnam_2010_a1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,12 @@ open BigOperators
noncomputable abbrev putnam_2010_a1_solution : ℕ → ℕ := sorry
-- (fun n : ℕ => Nat.ceil ((n : ℝ) / 2))
theorem putnam_2010_a1
(n : ℕ)
(kboxes : ℕ → Prop)
(npos : n > 0)
(hkboxes : ∀ k : ℕ, kboxes k = (∃ boxes : Fin n → Fin k, ∀ i j : Fin k, (∑' x : boxes ⁻¹' {i}, (x : ℕ)) = (∑' x : boxes ⁻¹' {j}, (x : ℕ))))
: kboxes (putnam_2010_a1_solution n) ∧ (∀ k : ℕ, kboxes k → k ≤ putnam_2010_a1_solution n) :=
sorry
(n : ℕ)
(kboxes : ℕ → Prop)
(npos : n > 0)
(hkboxes : ∀ k : ℕ, kboxes k =
(∃ boxes : Finset.Icc 1 n → Fin k, ∀ i j : Fin k,
∑ x in Finset.univ.filter (boxes · = i), (x : ℕ) =
∑ x in Finset.univ.filter (boxes · = j), (x : ℕ))) :
IsGreatest kboxes (putnam_2010_a1_solution n) :=
sorry
11 changes: 6 additions & 5 deletions lean4/src/putnam_2015_b6.lean
GeorgeTsoukalas marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -1,12 +1,13 @@
import Mathlib
open BigOperators

open Function
open Filter Topology

noncomputable abbrev putnam_2015_b6_solution : ℝ := sorry
-- Real.pi ^ 2 / 16
theorem putnam_2015_b6
(A : ℕ → ℕ)
(hA : ∀ k > 0, A k = {j : ℕ | Odd j ∧ j ∣ k ∧ j < Real.sqrt (2 * k)}.encard)
: ∑' k : Set.Ici 1, (-1 : ℝ) ^ ((k : ℝ) - 1) * (A k / (k : ℝ)) = putnam_2015_b6_solution :=
sorry
(A : ℕ → ℕ)
(hA : ∀ k > 0, A k = {j : ℕ | Odd j ∧ j ∣ k ∧ j < Real.sqrt (2 * k)}.encard) :
Tendsto (fun K : ℕ ↦ ∑ k in Finset.Icc 1 K, (-1 : ℝ) ^ ((k : ℝ) - 1) * (A k / (k : ℝ)))
atTop (𝓝 putnam_2015_b6_solution) :=
sorry
Loading