Student Name | Sciper | |
---|---|---|
Martin Rollet | [email protected] | 300780 |
Julien Ars | [email protected] | 314545 |
Github repo : https://github.com/merlebleue/DLAV2024-Spongiflex/tree/main
This project is about prediting precise vehicle trajectory prediction, using the UniTraj framework from VITA lab @ EPFL. For this part, the objective is mainly familiarising ourselves with the framework. We use the provided ptr
model, with the default configuration, evaluated using minADE6 error.
The code of the model can be consulted here : ptr.py The configuration is here : ptr.yaml
It consists of the provided code, with some parts we had to fill in. Here is our code :
-
Function
temporal_attn_fn()
:######################## Your code here ######################## for n in range(agents_emb.shape[2]): #per agent, assuming N is the number of agents agents_emb[:,:,n,:] = layer(agents_emb[:,:,n,:], src_key_padding_mask=agent_masks[:,:,n]) ################################################################
-
Function
social_attn_fn()
:######################## Your code here ######################## for t in range(agents_emb.shape[0]): #per time step, assuming T is the mnumber of time steps agents_emb[t,:,:,:] = layer(agents_emb[t,:,:,:], src_key_padding_mask=agent_masks[:,t,:].permute(1,0)) ################################################################
-
In the function
_forward()
:######################## Your code here ######################## # Apply temporal attention layers and then the social attention layers on agents_emb, each for L_enc times. for i in range(self.L_enc): agents_emb = self.temporal_attn_fn(agents_emb, opps_masks, self.temporal_attn_layers[i]) agents_emb = self.social_attn_fn(agents_emb, opps_masks, self.social_attn_layers[i]) ################################################################
Sadly, we encountered issues due to the presence of nan
values in the dataset. This seemed to arrise from agents that do not exist in the sequence, but we did not manage to get rid of this error.