Official source code for IJCAI 2022 Paper: Temporality Spatialization: A Scalable and Faithful Time-Travelling Visualization for Deep Classifier Training
Please run the following commands to install all dependencies:
$ pip install -r requirements.txt
- Prepare data
1.1 Save subject models and data following the following format.
data(input path)
└───Model
│ │ model.py (which contains subject model.)
│ │
│ └───Epoch_1
│ │ index.json (The index list of training data.)
│ │ subject_model.pth (state_dict)
| | (train_data.npy) *generated by TimeVis*
| | (test_data.npy) *generated by TimeVis*
| | (border_centers.npy) *generated by TimeVis*
│ └───Epoch_2
| | ...
│
└───Training_data
| │ training_dataset_data.pth
| │ training_dataset_label.pth
│
└───Testing_data
│ │ testing_dataset_data.pth
│ │ testing_dataset_label.pth
1.2 Set training hyperparameters in ~/TimeVis/singleVis/config.json
- Train a visualization model
$ python main.py ---content_path /path/to/subject_models --dataset dataset_name -g gpu_id
- Evaluate visualization model
$ python test.py ---content_path /path/to/subject_models --dataset dataset_name -g gpu_id
Hyperparameters | Meaning | Example |
---|---|---|
Config Name |
The config name for one training process | "cifar10" |
NET |
The subject model name to be called | "resnet18" |
TRAINING_LEN |
Training data len | 50000 |
TESTING_LEN |
Testing data len | 10000 |
LAMBDA |
The trade-off between umap loss and reconstruction loss. It depends on dataset. | 10. |
L_BOUND |
The | .5 |
MAX_HAUSDORFF |
r0 | |
ALPHA |
\alpha | |
BETA |
\beta | |
HIDDEN_LAYER |
The number of hidden layers for our visualization model. | 3 |
INIT_NUM |
||
EPOCH_START |
||
EPOCH_END |
||
EPOCH_PERIOD |
||
N_NEIGHBORS |
The | 15 |
MAX_EPOCH |
||
S_N_EPOCHS |
||
B_N_EPOCHS |
||
T_N_EPOCHS |
||
PATIENT |
Early stopping patient. | 3 |
If you find our tool helpful, please cite the following paper:
@inproceedings{yang2022temporality,
title={Temporality Spatialization: A Scalable and Faithful Time-Travelling Visualization for Deep Classifier Training},
author={Yang, Xianglin and Lin, Yun and Liu, Ruofan and Dong, Jin Song},
booktitle = {Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, {IJCAI-22}},
year={2022}
},
@inproceedings{yang2022deepvisualinsight,
title={DeepVisualInsight: Time-Travelling Visualization for Spatio-Temporal Causality of Deep Classification Training},
author={Yang, Xianglin and Lin, Yun and Liu, Ruofan and He, Zhenfeng and Wang, Chao and Dong, Jin Song and Mei, Hong},
booktitle = {The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)},
year={2022}
}