conda create -n twdgnn python=3.9
conda activate twdgnn
conda install pytorch==2.2.2 pytorch-cuda=12.1 -c pytorch -c nvidia
pip install torch_geometric
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.2.0+cu121.html
pip install torchmetrics
pip install torch-geometric-temporal
pip install -e .
Exemple launch experiments of EGCN on UNtrade:
# in config/wandb_conf/wandb_default.yaml put your wandb info
wandb login
mv scripts/paper_scripts/egcnh/egcn_searchtw_trade.sh scripts/egcn_searchtw_trade.sh
sh scripts/egcn_searchtw_trade.sh
All datasets use in our experiments are in the 'datasets' folder.
Cite as :
@misc{karmim2024temporalreceptivefielddynamic,
title={Temporal receptive field in dynamic graph learning: A comprehensive analysis},
author={Yannis Karmim and Leshanshui Yang and Raphaël Fournier S'Niehotta and Clément Chatelain and Sébastien Adam and Nicolas Thome},
year={2024},
eprint={2407.12370},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2407.12370},
}