Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Streaming openai api support #783

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion scripts/openai_server_demo/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

安装依赖
``` shell
pip install fastapi uvicorn shortuuid
pip install fastapi uvicorn shortuuid sse_starlette
```

启动脚本
Expand Down
21 changes: 17 additions & 4 deletions scripts/openai_server_demo/openai_api_protocol.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
from typing import Optional, List, Dict, Any, Union
from typing import Optional, List, Dict, Any, Union, Literal

import time

import shortuuid
from pydantic import BaseModel, Field


class ChatCompletionRequest(BaseModel):
model: str = "chinese-llama-alpaca"
messages: Union[str, List[Dict[str, str]]]
Expand All @@ -26,17 +27,30 @@ class ChatMessage(BaseModel):
content: str


class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None


class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage


class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]]


class ChatCompletionResponse(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{shortuuid.random()}")
object: str = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str = "chinese-llama-alpaca"
choices: List[ChatCompletionResponseChoice]
choices: List[
Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]
]


class EmbeddingsRequest(BaseModel):
Expand Down Expand Up @@ -76,6 +90,5 @@ class CompletionResponse(BaseModel):
id: Optional[str] = Field(default_factory=lambda: f"cmpl-{shortuuid.random()}")
object: Optional[str] = "text_completion"
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
model: Optional[str] = 'chinese-llama-alpaca'
model: Optional[str] = "chinese-llama-alpaca"
choices: List[CompletionResponseChoice]

202 changes: 160 additions & 42 deletions scripts/openai_server_demo/openai_api_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,28 @@
import os
from fastapi import FastAPI
import uvicorn

from threading import Thread
from sse_starlette.sse import EventSourceResponse
parser = argparse.ArgumentParser()
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default=None, type=str,help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path',default=None,type=str)
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--load_in_8bit',action='store_true', help='use 8 bit model')
parser.add_argument('--only_cpu',action='store_true',help='only use CPU for inference')
parser.add_argument('--alpha',type=str,default="1.0", help="The scaling factor of NTK method, can be a float or 'auto'. ")
parser.add_argument("--base_model", default=None, type=str, required=True)
parser.add_argument(
"--lora_model",
default=None,
type=str,
help="If None, perform inference on the base model",
)
parser.add_argument("--tokenizer_path", default=None, type=str)
parser.add_argument("--gpus", default="0", type=str)
parser.add_argument("--load_in_8bit", action="store_true", help="use 8 bit model")
parser.add_argument(
"--only_cpu", action="store_true", help="only use CPU for inference"
)
parser.add_argument(
"--alpha",
type=str,
default="1.0",
help="The scaling factor of NTK method, can be a float or 'auto'. ",
)
args = parser.parse_args()
load_in_8bit = args.load_in_8bit
if args.only_cpu is True:
Expand All @@ -19,10 +32,16 @@

import torch
import torch.nn.functional as F
from transformers import LlamaForCausalLM, LlamaTokenizer, GenerationConfig
from transformers import (
LlamaForCausalLM,
LlamaTokenizer,
GenerationConfig,
TextIteratorStreamer,
)
from peft import PeftModel

from patches import apply_attention_patch, apply_ntk_scaling_patch

apply_attention_patch(use_memory_efficient_attention=True)
apply_ntk_scaling_patch(args.alpha)

Expand All @@ -36,13 +55,15 @@
CompletionResponseChoice,
EmbeddingsRequest,
EmbeddingsResponse,
ChatCompletionResponseStreamChoice,
DeltaMessage,
)

load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
device = torch.device("cpu")
if args.tokenizer_path is None:
args.tokenizer_path = args.lora_model
if args.lora_model is None:
Expand All @@ -54,28 +75,34 @@
load_in_8bit=load_in_8bit,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto' if not args.only_cpu else None,
)
device_map="auto" if not args.only_cpu else None,
)

model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size!=tokenzier_vocab_size:
if model_vocab_size != tokenzier_vocab_size:
assert tokenzier_vocab_size > model_vocab_size
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model is not None:
print("loading peft model")
model = PeftModel.from_pretrained(base_model, args.lora_model,torch_dtype=load_type,device_map='auto',)
model = PeftModel.from_pretrained(
base_model,
args.lora_model,
torch_dtype=load_type,
device_map="auto",
)
else:
model = base_model

if device==torch.device('cpu'):
if device == torch.device("cpu"):
model.float()

model.eval()


def generate_completion_prompt(instruction: str):
"""Generate prompt for completion"""
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
Expand All @@ -85,23 +112,25 @@ def generate_completion_prompt(instruction: str):

### Response: """


def generate_chat_prompt(messages: list):
"""Generate prompt for chat completion"""
system_msg = '''Below is an instruction that describes a task. Write a response that appropriately completes the request.'''
system_msg = """Below is an instruction that describes a task. Write a response that appropriately completes the request."""
for msg in messages:
if msg.role == 'system':
if msg.role == "system":
system_msg = msg.content
prompt = f"{system_msg}\n\n"
for msg in messages:
if msg.role == 'system':
if msg.role == "system":
continue
if msg.role == 'assistant':
if msg.role == "assistant":
prompt += f"### Response: {msg.content}\n\n"
if msg.role == 'user':
if msg.role == "user":
prompt += f"### Instruction:\n{msg.content}\n\n"
prompt += "### Response: "
return prompt


def predict(
input,
max_new_tokens=128,
Expand Down Expand Up @@ -146,19 +175,86 @@ def predict(
output = output.split("### Response:")[-1].strip()
return output


def stream_predict(
input,
max_new_tokens=128,
top_p=0.75,
temperature=0.1,
top_k=40,
num_beams=4,
repetition_penalty=1.0,
do_sample=True,
model_id="chinese-llama-alpaca",
**kwargs,
):
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=DeltaMessage(role="assistant"), finish_reason=None
)
chunk = ChatCompletionResponse(
model=model_id,
choices=[choice_data],
object="chat.completion.chunk",
)
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))

if isinstance(input, str):
prompt = generate_completion_prompt(input)
else:
prompt = generate_chat_prompt(input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
do_sample=do_sample,
**kwargs,
)

streamer = TextIteratorStreamer(tokenizer)
generation_kwargs = dict(
streamer=streamer,
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=max_new_tokens,
repetition_penalty=float(repetition_penalty),
)
Thread(target=model.generate, kwargs=generation_kwargs).start()
for new_text in streamer:
if new_text.startswith("<s>"):
continue
if new_text.endswith("</s>"):
new_text = new_text.split("</s>")[0]
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=DeltaMessage(content=new_text), finish_reason=None
)
chunk = ChatCompletionResponse(
model=model_id, choices=[choice_data], object="chat.completion.chunk"
)
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
choice_data = ChatCompletionResponseStreamChoice(
index=0, delta=DeltaMessage(), finish_reason="stop"
)
chunk = ChatCompletionResponse(
model=model_id, choices=[choice_data], object="chat.completion.chunk"
)
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
yield "[DONE]"


def get_embedding(input):
"""Get embedding main function"""
with torch.no_grad():
if tokenizer.pad_token == None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
encoding = tokenizer(
input, padding=True, return_tensors="pt"
)
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
encoding = tokenizer(input, padding=True, return_tensors="pt")
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
model_output = model(
input_ids, attention_mask, output_hidden_states=True
)
model_output = model(input_ids, attention_mask, output_hidden_states=True)
data = model_output.hidden_states[-1]
mask = attention_mask.unsqueeze(-1).expand(data.size()).float()
masked_embeddings = data * mask
Expand All @@ -169,16 +265,30 @@ def get_embedding(input):
ret = normalized_embeddings.squeeze(0).tolist()
return ret


app = FastAPI()


@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
"""Creates a completion for the chat message"""
msgs = request.messages
if isinstance(msgs, str):
msgs = [ChatMessage(role='user',content=msgs)]
msgs = [ChatMessage(role="user", content=msgs)]
else:
msgs = [ChatMessage(role=x['role'],content=x['message']) for x in msgs]
msgs = [ChatMessage(role=x["role"], content=x["message"]) for x in msgs]
if request.stream:
generate = stream_predict(
input=msgs,
max_new_tokens=request.max_tokens,
top_p=request.top_p,
top_k=request.top_k,
temperature=request.temperature,
num_beams=request.num_beams,
repetition_penalty=request.repetition_penalty,
do_sample=request.do_sample,
)
return EventSourceResponse(generate, media_type="text/event-stream")
output = predict(
input=msgs,
max_new_tokens=request.max_tokens,
Expand All @@ -189,9 +299,16 @@ async def create_chat_completion(request: ChatCompletionRequest):
repetition_penalty=request.repetition_penalty,
do_sample=request.do_sample,
)
choices = [ChatCompletionResponseChoice(index = i, message = msg) for i, msg in enumerate(msgs)]
choices += [ChatCompletionResponseChoice(index = len(choices), message = ChatMessage(role='assistant',content=output))]
return ChatCompletionResponse(choices = choices)
choices = [
ChatCompletionResponseChoice(index=i, message=msg) for i, msg in enumerate(msgs)
]
choices += [
ChatCompletionResponseChoice(
index=len(choices), message=ChatMessage(role="assistant", content=output)
)
]
return ChatCompletionResponse(choices=choices)


@app.post("/v1/completions")
async def create_completion(request: CompletionRequest):
Expand All @@ -206,23 +323,24 @@ async def create_completion(request: CompletionRequest):
repetition_penalty=request.repetition_penalty,
do_sample=request.do_sample,
)
choices = [CompletionResponseChoice(index = 0, text = output)]
return CompletionResponse(choices = choices)
choices = [CompletionResponseChoice(index=0, text=output)]
return CompletionResponse(choices=choices)


@app.post("/v1/embeddings")
async def create_embeddings(request: EmbeddingsRequest):
"""Creates text embedding"""
embedding = get_embedding(request.input)
data = [{
"object": "embedding",
"embedding": embedding,
"index": 0
}]
data = [{"object": "embedding", "embedding": embedding, "index": 0}]
return EmbeddingsResponse(data=data)


if __name__ == "__main__":
log_config = uvicorn.config.LOGGING_CONFIG
log_config["formatters"]["access"]["fmt"] = "%(asctime)s - %(levelname)s - %(message)s"
log_config["formatters"]["default"]["fmt"] = "%(asctime)s - %(levelname)s - %(message)s"
uvicorn.run(app, host='0.0.0.0', port=19327, workers=1, log_config=log_config)
log_config["formatters"]["access"][
"fmt"
] = "%(asctime)s - %(levelname)s - %(message)s"
log_config["formatters"]["default"][
"fmt"
] = "%(asctime)s - %(levelname)s - %(message)s"
uvicorn.run(app, host="0.0.0.0", port=19327, workers=1, log_config=log_config)