Skip to content

Probabilistic Graph-based Dependency Parsing with Neural Network.

License

Notifications You must be signed in to change notification settings

zzsfornlp/nnpgdparser

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nnpgdparser: Probabilistic Graph-based Dependency Parser with Neural Netwrok


Intro

This repo contains the implementation for a probabilistic graph-based dependency parser with neural network. The parser is written in c++, and use feed-forward + convolutional neural network models for high-order graph-based dependency parsing.

This could be regarded as an update version of nngdparser, with new neural-network implementation, and better training methods.

How to compile

Change to the top-layer directory of the project, and Run "make" or directly run "bash compile_mkl.sh" or "bash compile_blas.sh" for one-time compiling.

The "nnpgdp" is the runnable file for the parser.

This is the environment where we compile it, if you are interested in compiling in other environments, please figure out the library dependents.

Platform: Linux os
Compiler: g++, gcc
Libraries: Boost C++ libraries, Blas (atlas or mkl).

For more informations of compiling and the libraries, please check out the makefile or the compile script.

How to run

For the training and testing part, please check out the doc/Usage.txt file for details.

More Documentation

Please check the doc for more details, starting with doc/INDEX.txt will be a good option.

Related paper

This is the implementation of our paper in ACL-2016: link.

@InProceedings{zhang-zhao-qin:2016:P16-1,
  author    = {Zhang, Zhisong and Zhao, Hai and Qin, Lianhui},
  title     = {Probabilistic Graph-based Dependency Parsing with Convolutional Neural Network},
  booktitle = {Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  month     = {August},
  year      = {2016},
  address   = {Berlin, Germany},
  publisher = {Association for Computational Linguistics},
  pages     = {1382--1392},
  url       = {http://www.aclweb.org/anthology/P16-1131}
}

About

Probabilistic Graph-based Dependency Parsing with Neural Network.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published